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A note on vulnerability disclosure
 
We would like to thank the CERT Coordination Center, the ICS-CERT, the German Federal Office for Information Security 
(BSI) and the JPCERT Coordination Center for their help in coordinating the disclosure of the AMNESIA:33 vulnerabilities.

We do not provide a list of affected or suspected-to-be-affected vendors in this report. We have shared this list with the 
coordinating agencies, and we will rely on them, as well as the vendors, to provide their own advisories.

We do mention a few examples of vendors, including components and devices that embed the vulnerable stacks, in 
Chapter 5. Those are mentioned because they help to illustrate important points.
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https://kb.cert.org/vuls/
https://us-cert.cisa.gov/ics
https://www.bsi.bund.de/EN/Topics/Industry_CI/ICS/contact/contact_node.html
https://www.bsi.bund.de/EN/Topics/Industry_CI/ICS/contact/contact_node.html
https://www.jpcert.or.jp/english/
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1. Executive summary
• Forescout Research Labs has launched Project 

Memoria, an initiative that aims at providing the 
community with the largest study on the security of 
TCP/IP stacks. Project Memoria’s goal is to develop 
the understanding of common bugs behind the 
vulnerabilities in TCP/IP stacks, identifying the threats 
they pose to the extended enterprise and how to 
mitigate those.

• AMNESIA:33 is the first study we have published 
under Project Memoria. In this study, we discuss 
the results of the security analysis of seven open 
source TCP/IP stacks and report a bundle of 33 new 
vulnerabilities found in four of the seven analyzed 
stacks that are used by major IoT, OT and IT device 
vendors.

• Four of the vulnerabilities in AMNESIA:33 are critical, 
with potential for remote code execution on certain 
devices. Exploiting these vulnerabilities could allow 
an attacker to take control of a device, thus using it 
as an entry point on a network for internet-connected 
devices, as a pivot point for lateral movement, as 
a persistence point on the target network or as the 
final target of an attack. For enterprise organizations, 
this means they are at increased risk of having their 
network compromised or having malicious actors 
undermine their business continuity. For consumers, 
this means that their IoT devices may be used as part 
of large attack campaigns, such as botnets, without 
them being aware. 

• AMNESIA:33 affects multiple open source TCP/IP 
stacks that are not owned by a single company. This 
means that a single vulnerability tends to spread 
easily and silently across multiple codebases, 
development teams, companies and products, which 
presents significant challenges to patch management.

• We estimate that more than 150 vendors and millions 
of devices are vulnerable to AMNESIA:33. However, it 

is difficult to assess the full impact of AMNESIA:33 
because the vulnerable stacks are widely spread 
(across different IoT, OT and IT devices in different 
verticals), highly modular (with components, features 
and settings being present in various combinations 
and code bases often being forked) and incorporated 
in undocumented, deeply embedded subsystems. For 
the same reasons, these vulnerabilities tend to be very 
hard to eradicate.

• The TCP/IP stacks affected by AMNESIA:33 can be 
found in operating systems for embedded devices, 
systems-on-a-chip, networking equipment, OT devices 
and a myriad of enterprise and consumer IoT devices.

• TCP/IP stacks are critical components of all IP-
connected devices, including IoT and OT, since they 
enable basic network communications. A security 
flaw in a TCP/IP stack can be extremely dangerous 
because the code in these components may be 
used to process every incoming network packet 
that reaches a device. This means that some 
vulnerabilities in a TCP/IP stack allow for a device to 
be exploited, even when it simply sits on a network 
without running a specific application.

• Many of the vulnerabilities reported within 
AMNESIA:33 arise from bad software development 
practices, such as an absence of basic input 
validation. They relate mostly to memory corruption 
and can cause denial of service, information leaks or 
remote code execution.

• Due to the complexity of identifying and patching 
vulnerable devices, vulnerability management for TCP/
IP stacks is becoming a challenge for the security 
community. We recommend adopting solutions that 
provide granular device visibility, allow the monitoring 
of network communications and isolate vulnerable 
devices or network segments to manage the risk 
posed by these vulnerabilities.
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https://www.forescout.com/forescout-research-labs/?&utm_medium=amnesia33-webpage&utm_source=amnesia33-research-report&utm_campaign=forescout-research-labs-webpage&utm_content=forescout-research-labs-webpage
https://www.forescout.com/amnesia33/?&utm_medium=amnesia33-webpage&utm_source=amnesia33-research-report&utm_campaign=amnesia33-webpage&utm_content=amnesia33-webpage
https://www.forescout.com/amnesia33/?&utm_medium=amnesia33-webpage&utm_source=amnesia33-research-report&utm_campaign=amnesia33-webpage&utm_content=amnesia33-webpage
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2. About Project Memoria

Forescout Research Labs worked in close collaboration 
with JSOF to identify vendors and devices potentially 
affected by the Ripple20 vulnerabilities, which affect the 
Treck TCP/IP stack and many vendors that use it in their 
IoT/OT products. 

Ripple20 is the latest example of TCP/IP stack 
vulnerabilities that expose a complex IoT supply chain, 
thus affecting millions of devices across many industries. 
While working on Ripple20, it became clear that the 
problems with TCP/IP security flaws are not related 
to a few vendor-specific stacks. On the contrary, we 
hypothesized that the problem was much more generic 
and widespread. 

Forescout Research Labs has launched Project Memoria, 
an initiative with the mission of providing the community 
with the largest study on the security of TCP/IP stacks. 
Under Project Memoria, Forescout Research Labs 
collaborates with industry peers, as well as universities 
and research institutes, to understand common mistakes 

behind the vulnerabilities in TCP/IP stacks, identify the 
threats they pose to the extended enterprise and how to 
mitigate the risk.

This report focuses on AMNESIA:33, the first study we 
published under Project Memoria, where we discuss the 
results of the security analysis of seven open source 
TCP/IP stacks. Other studies, focusing on different TCP/
IP stack components, will be ongoing.

With AMNESIA:33, we report on 33 new vulnerabilities 
found in four of the seven stacks analyzed, namely 
uIP, FNET, PicoTCP and Nut/Net. These stacks exist in 
several variants, and they are used by several vendors 
in different commercial products, both consumer 
and enterprise grade, including critical devices in OT 
environments.

The vulnerabilities included in AMNESIA:33 range in 
potential impact from denial of service to remote code 
execution and affect several components and features of 
the stacks, such as IPv4 and v6, ICMP, TCP and DNS. 
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The origins of Project Memoria

The word Memoria originates from Latin and, in many 
Romance languages, means “memory.” Its use as a project 
name refers to two facts. First, that many vulnerabilities in 
TCP/IP stacks bring to memory vulnerabilities we used to 
see in IT systems in the 1990s and early-2000s. Second, 
that TCP/IP stacks are a somewhat forgotten foundation of 
the IoT that we want to bring forward from memory.

INFORMATIONAL 

The word Amnesia refers to the fact that most 
vulnerabilities in TCP/IP stacks, particularly the ones in 
AMNESIA:33, stem from memory corruption, which is 
an attacker’s capability of reading or writing memory 
locations that were not intended in the original behavior of 
a target software. The different degrees of control over that 
capability are what lead to different impacts such as denial 
of service, information leaks and remote code execution. 

https://www.jsof-tech.com/
https://www.forescout.com/company/blog/identifying-and-protecting-devices-vulnerable-to-ripple20/
https://www.forescout.com/company/blog/identifying-and-protecting-devices-vulnerable-to-ripple20/
https://github.com/adamdunkels/uip
http://fnet.sourceforge.net/
https://github.com/tass-belgium/picotcp
http://www.ethernut.de/
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A look at the foundations:  
the importance of TCP/IP stacks

Traditionally, embedded systems – such as a combination 
of hardware and software designed for a specific function, 
such as sensors or control mechanisms – relied on serial 
networks for communication. With the rise of the Internet of 
Things and the convergence of OT and IT, networks based 
on the TCP/IP protocol suite have proliferated, and they 
have often displaced old serial networks.

INFORMATIONAL 

Nowadays, devices communicate with each other via a wide 
array of protocols at different layers. The TCP/IP model in 
Figure 1 shows how network communications happen in 
layers and how each layer relies on the others. You can see 
how application layer communications (such as HTTP) rely 
on underlying internet layer (IP) and transport layer (TCP) 
communications. The TCP/IP layers are of paramount 
importance in modern network communication because 
they are at the very foundation of every communication 
happening via any of the protocols above.

TCP/IP functionality is implemented by means of a piece of 
software called a protocol stack. Protocol stacks, whether 
general purpose like SMB or domain specific like DNP3, 
present an attractive target for malicious actors because 
(a) they have direct network exposure; (b) they are often 
implemented as low-level system functionality and, as 
such, tend to be implemented in memory-unsafe languages 
such as C and C++; (c) they are widely deployed; and (d) 
they often offer a variety of unauthenticated functionality 
exposing potential attack surface. 

In addition, the code at the lower layers of protocol stacks 
(like TCP/IP) is used to process every incoming frame and 

packet that reaches a device, allowing for cases where 
a system can be exploited even when it is not running a 
specific application or listening on a particular port.

Finally, embedded systems, such as IoT and OT devices, 
tend to have long vulnerability lifespans resulting from a 
combination of patching issues, long support lifecycles and 
vulnerabilities ‘trickling down’ highly complex and opaque 
supply chains. As a result, vulnerabilities in embedded TCP/
IP stacks have the potential to affect millions – even billions 
– of devices across verticals and tend to remain a problem 
for a very long time.

HTTP, SSH, FTP

TCP, UDP

IPv4, IPv6, ICMP

ARP, Ethernet, WiFi

Application

Transport

Internet

Link

Application

Transport

Internet

Link

Figure 1 – The TCP/IP networking model

https://en.wikipedia.org/wiki/EternalBlue
https://en.wikipedia.org/wiki/SMBGhost_(security_vulnerability)
https://www.zerodayinitiative.com/advisories/ZDI-20-549/
https://en.wikipedia.org/wiki/Memory_safety
https://barrgroup.com/embedded-systems/market-surveys/2018-safety-security
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3. AMNESIA:33 – a security analysis 
of open source TCP/IP stacks

3.1. Why focus on open source TCP/IP 
stacks?

If “software is eating the world,” as Marc Andreessen 
famously said, then we can say that open source 
software is eating the embedded/IoT world. The 
2019 Embedded Markets Study revealed that 88% of 
embedded projects reused source code (either internally 
developed code, third-party open source code or third-
party commercial code). This is not so surprising, since 
development projects rarely start from scratch. What 
is more interesting is that, out of these projects, 58% 
used an open source RTOS (16% with and 42% without 
commercial support), which typically includes an open 
source embedded TCP/IP stack. Even more interesting, 
a historical analysis in the same study shows that the 
use of commercial OSes is declining since at least 2015, 
while the use of open source is increasing. Sixty-three 
percent of respondents in that study claimed that they 
intend to use an open source OS in their next project. 

One reason why open source components are so popular 
is that 35% of developers consider the availability of full 
source code to be the most important reason to choose 
an OS. Regardless of the reasons, the same report 
shows that only 4% of design time is spent on security 
and privacy assessments. 

There is a wealth of literature pointing at the risks posed 
by third-party components on enterprise software, 
including open source, such as the need to keep track of 
vulnerabilities in these components, assess their impact 
in a final product and decide whether or not to fix them, 
assuming that a fix is provided by the third party. With 
AMNESIA:33, we aim to show how widespread these 
issues are among open source TCP/IP stacks.

3.2. Which open source stacks, exactly?

For our study, we selected a sample of seven open 
source embedded TCP/IP stacks to analyze. Our choices 
were based on (i) whether the stack is used or supported 
by popular RTOSes (e.g., FreeRTOS and uC/OS are used 
in respectively 18% and 7% of embedded projects); and 
(ii) the popularity of embedded devices using the stack. 

Table 1 lists the stacks that we ultimately selected for 
our analysis. Note that (1) most of the stacks are close 
to two decades old, which means that many versions of 
their code exist, and many devices using the stacks are 
probably end-of-life; and (2) we only provide examples 
of notable OSes using the stacks, so the list is far from 
being exhaustive.
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https://a16z.com/2011/08/20/why-software-is-eating-the-world/
https://www.embedded.com/2019-embedded-markets-study-reflects-emerging-technologies-continued-c-c-dominance/
https://www.embedded.com/2019-embedded-markets-study-reflects-emerging-technologies-continued-c-c-dominance/
https://ieeexplore.ieee.org/abstract/document/8316943
https://link.springer.com/article/10.1007/s10664-020-09830-x
https://link.springer.com/chapter/10.1007/978-3-319-30806-7_12
https://www.freertos.org/
https://www.micrium.com/rtos/
https://www.embedded.com/2019-embedded-markets-study-reflects-emerging-technologies-continued-c-c-dominance/
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# Stack Description License
Examples of 
OSes using it

1 lwIP

lwIP (Lightweight IP) was developed in 2000 by Adam Dunkels 
at the Swedish Institute of Computer Science and is now 
maintained by a large group of developers. lwIP has become very 
popular as part of FreeRTOS or as a standalone stack, now being 
used by products such as Tesla gateway ECU and Philips Hue 
smart lights.

BSD

LiteOS 
RT-Thread 
FreeRTOS 
ReactOS

2 uIP

uIP (micro IP) was designed to be even lighter than lwIP 
and was released in 2001 as an open source project also by 
Adam Dunkels. It was extended by Cisco in 2008 with IPv6. 
Its development has been halted as a standalone project, but 
it continues as part of the Contiki OS, which in turn has a new 
version called Contiki-NG. uIP is known to have been used in 
devices as diverse as networking switches and picosatellites.

BSD

Contiki 
Contiki-NG 
RT-Thread 
FreeRTOS 

NuttX

3 Nut/Net

Nut/Net is the IP stack used by NutOS, which has been 
developed by the Ethernut project since 2002. The stack is used 
both by hobbyists and by commercial devices, including in OT/
ICS.

BSD NutOS

4 FNET
FNET was developed originally at Freescale in 2003 and made 
public in 2009. It is currently maintained by Andrey Butok.

Apache v2 -

5 picoTCP

picoTCP was developed by Altran Intelligent Systems and made 
open source in 2013. The stack continues to be developed as 
picoTCP-NG, which is no longer supported by Altran. Online, there 
is not much public mention of PicoTCP uses.

GPLv2 / 
Commercial

seL4 
TRENTOS

6 CycloneTCP

CycloneTCP is developed by Oryx Embedded and distributed 
in source code form since 2013. Its website mentions uses in 
Industrial IoT, energy metering and management, transportation 
and smart buildings.

GPLv2 /
Commercial

-

7 uC/TCP-IP

uC/TCP-IP was developed originally by Micrium in 2002 and has 
been open sourced in February 2020. uC/OS, which typically 
relies on the stack, is known to be used in medical devices, 
industrial control systems and other critical applications.

Apache v2 
(previously 

commercial)

uC/OS-II  
uC/OS-III 
Cesium

Table 1 – Analyzed stacks

https://savannah.nongnu.org/projects/lwip/
https://2016.zeronights.ru/wp-content/uploads/2016/12/Gateway_Internals_of_Tesla_Motors_v6.pdf
https://hackaday.com/2016/07/26/root-on-the-philips-hue-iot-bridge/
https://github.com/LiteOS/LiteOS/tree/master/components/net/lwip
https://github.com/RT-Thread/rt-thread/tree/master/components/net
https://github.com/FreeRTOS/FreeRTOS/tree/master/FreeRTOS/Demo/Common/ethernet
https://github.com/reactos/reactos/tree/3a98d96eac606d3fc258ef298b80a71f00d96188/sdk/lib/drivers/lwip
https://github.com/adamdunkels/uip
https://www.iab.org/wp-content/IAB-uploads/2011/04/Dunkels.pdf
https://github.com/contiki-os/contiki/tree/master/core/net/ip
https://github.com/contiki-ng/contiki-ng/tree/master/os/net/ipv6
https://github.com/RT-Thread/rt-thread/tree/master/components/net
https://github.com/FreeRTOS/FreeRTOS/tree/master/FreeRTOS/Demo/Common/ethernet
https://github.com/apache/incubator-nuttx/blob/master/include/nuttx/net/ip.h
https://sourceforge.net/projects/ethernut/
http://www.ethernut.de/en/community/appliances.html
https://www.proconx.com/products/xnut
https://www.proconx.com/products/xnut
http://www.ethernut.de/en/software/
https://sourceforge.net/projects/fnet/
https://github.com/tass-belgium/picotcp
https://docs.sel4.systems/projects/available-user-components.html
https://hensoldt-cyber.com/trentos/
https://www.oryx-embedded.com/products/CycloneTCP
https://www.oryx-embedded.com/about.html
https://github.com/SiliconLabs/uC-TCP-IP
https://www.micrium.com/about/customer-stories/
https://github.com/SiliconLabs/uC-OS2
https://github.com/SiliconLabs/uC-OS3
https://www.weston-embedded.com/products/cesium
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3.3. 33 new findings

To perform our analysis, we used a combination of 
automated fuzzing (white-box code instrumentation 
based on libFuzzer), manual analysis guided by variant 
hunting using the Joern code querying engine and a 
pre-existing corpus of vulnerabilities that we will describe 
in Chapter 4 and manual code review. In this way, we 

found a total of 33 new vulnerabilities spread across the 
different stacks, as described in Table 2. In the Table, 
we also differentiate between vulnerabilities found via 
fuzzing (33%) and vulnerabilities found via static analysis 
(67%). Although the targets are different, these numbers 
are in line with the results reported by Google’s ‘Project 
Zero’ at Black Hat USA 2019.

RESEARCH REPORT  |  AMNESIA:33  |  AMNESIA:33 – a security analysis of open source TCP/IP stacks

Stack
Versions 
Analyzed

# of Total New 
Vulnerabilities

# of New 
Vulnerabilities 

Found Via Fuzzing

# of New 
Vulnerabilities Found 

Via Code Analysis

uIP
uIP 1.0, Contiki 3.0, 

Contiki-NG 4.5
13 6 7

picoTCP
picoTCP 1.7.0, 

picoTCP-NG 2.0.0
10 5 5

FNET 4.6.3 5 0 5

Nut/Net 5.1 5 0 5

lwIP 2.1.2 0 0 0

CycloneTCP 1.9.6 0 0 0

uC/TCP-IP 3.06.00 0 0 0

Table 2 – AMNESIA:33 vulnerabilities across the analyzed stacks

In our study, we did not find any vulnerability in the lwIP, 
CycloneTCP and uC/TCP-IP stacks. Although this does not 
imply that there are no flaws in these stacks, we observed 
that the three stacks have very consistent bounds checking 
and generally do not rely on shotgun parsing, one of the 
most common anti-patterns we identified. 

We are not aware of any previous research done or 
vulnerabilities found on CycloneTCP or uC/TCP-IP. lwIP has 
a previously reported DNS cache poisoning (CVE-2014-

HIGHLIGHTS

4883) and has been analyzed before as part of FreeRTOS 
and in terms of TCP conformance. We found two bugs in 
the PPP component of lwIP, but they were reported to the 
project and found unexploitable. As usual, these negative 
results do not imply that there are no vulnerabilities in these 
three stacks, but, from our analysis, they seem generally 
more robust than the others in our dataset.

https://llvm.org/docs/LibFuzzer.html
https://joern.io/
https://i.blackhat.com/USA-19/Thursday/us-19-Hawkes-Project-Zero-Five-Years-Of-Make-0day-Hard.pdf
https://i.blackhat.com/USA-19/Thursday/us-19-Hawkes-Project-Zero-Five-Years-Of-Make-0day-Hard.pdf
https://nvd.nist.gov/vuln/detail/CVE-2014-4883
https://nvd.nist.gov/vuln/detail/CVE-2014-4883
https://speakerdeck.com/jsandin/shmoocon-2016-exploiting-memory-corruption-vulnerabilities-on-the-freertos-operating-system
https://shmoo.gitbook.io/2016-shmoocon-proceedings/bring_it_on/01_exploiting_memory_corruption
https://arxiv.org/abs/2002.05400
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The details of the new vulnerabilities are shown in Table 
3 (uIP), Table 4 (picoTCP), Table 5 (FNET) and Table 6 
(Nut/Net), and can be summarized as follows:

• AMNESIA:33 affects seven different components of 
the stacks (DNS, IPv6, IPv4, TCP, ICMP, LLMNR and 
mDNS). Two vulnerabilities in AMNESIA:33 only affect 
6LoWPAN wireless devices.

• AMNESIA:33 has four categories of potential impact: 
remote code execution (RCE), denial of service 
(DoS via crash or infinite loop), information leak 
(infoleak) and DNS cache poisoning. Generally, these 
vulnerabilities can be exploited to take full control of 
a target device (RCE), impair its functionality (DoS), 
obtain potentially sensitive information (infoleak) or 
inject malicious DNS records to point a device to an 
attacker-controlled domain (DNS cache poisoning).
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CVE- 
2020-

Description
Affected 

Component
Potential 
Impact

CVSSv3.1 
Score

13984
The function used to process IPv6 extension headers 
and extension header options can be put into an infinite 
loop state due to unchecked header/option lengths.

Ext. header parsing 
in IPv6 (6LoWPAN)

DoS 7.5

13985

The function used to decapsulate RPL extension 
headers does not check for unsafe integer conversion 
when parsing the values provided in a header, allowing 
attackers to corrupt memory.

Ext. header parsing 
in IPv6

DoS 7.5

13986

The function used to decapsulate RPL extension 
headers does not check the length value of an RPL 
extension header received, allowing attackers to put it 
into an infinite loop.

Ext. header parsing 
in IPv6 (6LoWPAN)

DoS 7.5

13987

The function that parses incoming transport layer 
packets (TCP/UDP) does not check the length fields of 
packet headers against the data available in the packets. 
Given arbitrary lengths, an out-of-bounds memory read 
may be performed during the checksum computation.

TCP/UDP checksum 
calculation in IPv4

DoS 
Infoleak

8.2

13988

The function that parses the TCP MSS option does 
not check the validity of the length field of this option, 
allowing attackers to put it into an infinite loop, when 
arbitrary TCP MSS values are supplied.

TCP options parsing 
in IPv4

DoS 7.5

17437

When handling TCP Urgent data, there are no sanity 
checks for the value of the Urgent data pointer, allowing 
attackers to corrupt memory by supplying arbitrary 
Urgent data pointer offsets within TCP packets.

TCP packet 
processing

DoS 8.2

Table 3 – Details of the new vulnerabilities on uIP Low: 0.1-3.9,           Medium: 4.0-6.9           High: 7.0-8.9           Critical: 9.0-10.0   
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CVE- 
2020-

Description
Affected 

Component
Potential 
Impact

CVSSv3.1 
Score

17438

The code that reassembles fragmented packets does 
not validate the total length of an incoming packet 
specified in its IP header, as well as the fragmentation 
offset value specified in the IP header. This may lead to 
memory corruption.

Fragmented packet 
reassembly in IPv4

DoS 7.0

17439

Incoming DNS replies are parsed by the DNS client even 
if there were no outgoing queries. The DNS transaction 
ID is not sufficiently random. Provided that the DNS 
cache is quite small (4 entries), this facilitates DNS 
cache poisoning attacks.

DNS response 
processing

DNS cache 
poisoning

8.1

17440

When parsing incoming DNS packets, there are no 
checks whether domain names are null-terminated. This 
allows attackers to achieve memory corruption with 
crafted DNS responses.

DNS domain name 
decoding

DoS 7.5

24334

The code that processes DNS responses does not check 
whether the number of responses specified in the DNS 
packet header correspond to the response data available 
in the DNS packet, allowing attackers to corrupt 
memory.

DNS response 
processing

DoS 8.2

24335
The function that parses domain names lacks bounds 
checks, allowing attackers to corrupt memory with 
crafted DNS packets.

DNS domain name 
decoding

DoS 7.5

24336

The code for parsing DNS records in DNS response 
packets sent over NAT64 does not validate the length 
field of the response records, allowing attackers to 
corrupt memory.

DNS response 
parsing in NAT64

RCE 9.8

25112

Several issues, such as insufficient checks for the IPv4/
IPv6 header length and inconsistent checks for the IPv6 
header extension lengths, allow attackers to corrupt 
memory.

ICMPv6 echo/reply 
processing

RCE 8.1
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Table 4 – Details of the new vulnerabilities on picoTCP

CVE- 
2020-

Description
Affected 

Component
Potential 
Impact

CVSSv3.1 
Score

17441
The payload length field of IPv6 extension headers is not 
checked against the data available in incoming packets, 
allowing attackers to corrupt memory.

Ext. header parsing 
in IPv6, ICMPv6 

checksum

DoS 
Infoleak

7.5

17442

The function that processes the Hop-by-Hop extension 
header in IPv6 packets and its options lacks any checks 
against the length field of the header, allowing attackers 
to put the function into an infinite loop by supplying 
arbitrary length values.

Ext. header parsing 
in IPv6

DoS 7.5

17443

When processing ICMPv6 echo requests, there are no 
checks for whether the ICMPv6 header consists of at 
least 8 bytes (set by RFC443). This leads to the function 
that creates ICMPv6 echo replies based on a received 
request with a smaller header to corrupt memory.

ICMPv6 echo 
request processing

DoS 8.2

17444

The function that processes IPv6 headers does not 
check the lengths of extension header options, allowing 
attackers to put this function into an infinite loop with 
crafted length values.

Ext. header parsing 
in IPv6

DoS 7.5

17445

The function that processes the IPv6 Destination 
Options extension header does not check the validity 
of its options lengths, allowing attackers to corrupt 
memory and/or put the function into an infinite loop with 
crafted length values.

Ext. header parsing 
in IPv6

DoS 7.5

24337

The function that processes TCP options does not 
validate their lengths, allowing attackers to put 
the function into an infinite loop with uncommon/
unsupported TCP options that have crafted length 
values.

TCP options parsing 
in IPv4

DoS 7.5

24338
The function that parses domain names lacks bounds 
checks, allowing attackers to corrupt memory with 
crafted DNS packets.

DNS domain name 
decoding

RCE 9.8

24339
The function that parses domain names lacks bounds 
checks, allowing attackers to corrupt memory with 
crafted DNS packets.

DNS domain name 
decoding

DoS 7.5
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CVE- 
2020-

Description
Affected 

Component
Potential 
Impact

CVSSv3.1 
Score

17467
When parsing LLMNR requests, there are no checks 
whether domain names are null-terminated. This may 
allow attackers to read out of bounds.

LLMNR state 
machine

Infoleak 8.2

17468
The function that processes the IPv6 Hop-by-Hop 
extension header does not check the validity of its 
options lengths, allowing attackers to corrupt memory.

Ext. header parsing 
in IPv6

DoS 7.5

17469

The IPv6 packet reassembly function does not check 
whether the received fragments are properly aligned 
in memory, allowing attackers to perform memory 
corruption with crafted IPv6 fragmented packets.

Fragmented packet 
reassembly in IPv6

DoS 5.9

17470

The code that initializes the DNS client interface 
structure does not set sufficiently random transaction 
IDs (they will be always set to 1), facilitating DNS cache 
poisoning attacks.

DNS response 
processing

DNS cache 
poisoning

4

24383

When parsing incoming mDNS packets, there are no 
checks whether domain names are null-terminated. This 
allows attackers to achieve memory corruption and/or 
memory leak.

DNS domain name 
decoding

DoS 
Infoleak

6.5

Table 5 – Details of the new vulnerabilities on FNET

CVE- 
2020-

Description
Affected 

Component
Potential 
Impact

CVSSv3.1 
Score

24340

The code that processes DNS responses does not check 
whether the number of responses specified in the DNS 
packet header correspond to the response data available 
in the DNS packet, allowing attackers to perform 
memory corruption.

DNS response 
processing

DoS 
Infoleak

8.2

24341

The TCP input data processing function does not 
validate the length of incoming TCP packets, allowing 
attackers to read out of bounds and perform memory 
corruption.

TCP packet 
processing

DoS 
Infoleak

8.2
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CVE- 
2020-

Description
Affected 

Component
Potential 
Impact

CVSSv3.1 
Score

25107 The code that processes DNS questions/responses has 
several issues: (1) there is no check on whether a domain 
name is NULL-terminated; (2) the DNS response data length is 
not checked (can be set to arbitrary value from a packet); (3) 
the number of DNS queries/responses (set in DNS header) is 
not checked against the data present; (4) the length byte of a 
domain name in a DNS query/response is not checked and is 
used for internal memory operations.

DNS domain name 
decoding/ DNS 

response processing

DoS 7.5

25108 DoS 7.5

25109 DoS 8.2

25110 DoS 8.2

25111 RCE 9.8

Table 6 – Details of the new vulnerabilities on Nut/Net

A note on bug collision

All the vulnerabilities described in this chapter were found 
independently. However, CVE-2020-24338 was later found 
to have been reported previously as CVE-2017-1000210, 
which was fixed on PicoTCP-NG and had a pull request 

INFORMATIONAL 

on the original project fixing it that was never merged on 
the master branch. Similarly, CVE-2020-17437 was later 
found to have been fixed on Contiki-NG but not on previous 
versions (uIP and Contiki) and never reported as a CVE.

4. A comparison with  
similar studies

General-purpose TCP/IP stacks seem to have become 
more robust since the days of WinNuke and the Ping 
of Death affecting Linux, Mac and Windows systems, 
despite occasional issues still occurring.

However, in the past few years, together with 
AMNESIA:33, there has been a spate of vulnerabilities 
in various embedded TCP/IP stacks as shown in Table 
7. Throughout this chapter, we will use the sample of 
vulnerabilities shown in the table to perform an analysis 
of the general trend.

https://nvd.nist.gov/vuln/detail/CVE-2017-1000210
https://github.com/tass-belgium/picotcp/pull/473/commits/b5b3393c45bc9069b597237cc74a4a2934fed822
https://github.com/contiki-ng/contiki-ng/commit/a657bc6f41c05f9b1b086df9fde7c3241454fe75
https://en.wikipedia.org/wiki/WinNuke
https://en.wikipedia.org/wiki/Ping_of_death
https://en.wikipedia.org/wiki/Ping_of_death
https://github.com/Netflix/security-bulletins/blob/master/advisories/third-party/2019-001.md
https://docs.microsoft.com/en-us/security-updates/SecurityBulletins/2011/ms11-083?redirectedfrom=MSDN
https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2020-16898
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Year of disclosure TCP/IP stack # Vulnerabilities disclosed

2013 Microchip TCP/IP 1

2014 uIP, lwIP 1

2017 RTCS TCP/IP 2

2017 picoTCP 1

2018 FreeRTOS+TCP 10

2019 Nucleus NET 1

2019 Interpeak IPnet 11 (URGENT/11)

2020 InterNiche NicheStack 1

2020 Treck TCP/IP 19 (Ripple20)

2020 uIP, PicoTCP, FNET, Nut/Net 33 (AMNESIA:33)

The first thing to notice from Table 7 is the significant 
increase in numbers of vulnerabilities in recent advisories, 
particularly for something as fundamental as a TCP/IP 
stack. This indicates relative security immaturity, which 
does not correlate with adoption, since IPnet and Treck, 
for instance, are highly popular stacks that have been in 
active use for decades. As we will show in Chapter 5, the 
same is true for the stacks of AMNESIA:33.

To better understand and contextualize the AMNESIA:33 
vulnerabilities using the dataset of Table 7, we analyze 
those vulnerabilities from five angles: 

• Affected components, i.e., which parts of stacks are 
usually vulnerable. We find that the DNS, TCP and 
IP sub-stacks are the most often vulnerable. DNS, 
in particular, seems to be vulnerable because of its 
complexity.

• Types of vulnerabilities, i.e., which vulnerabilities 
are often found in these stacks. The most common 
memory corruption vulnerabilities are out-of-bounds 

reads and writes, followed by integer overflows. The 
most common non-memory-related issue is state 
confusion arising from request-reply matching. 

• Anti-patterns, i.e., what code patterns are most 
conducive to vulnerabilities. We find that common 
anti-patterns include issues with calculating and/or 
validating header and field lengths, properly parsing 
various header option fields, ensuring that there is 
enough data in the packet (in contrast to relying 
on what is specified in the header), handling the 
TCP Urgent pointer, fragmentation reassembly, IP 
tunneling, verification of DNS domain name length and 
null termination.

• Exploitability, i.e., if and how these vulnerabilities 
can be exploited. In general, exploitability comes 
down to how a stack is used in a particular device, 
which can be broken down in three major categories: 
stack configuration (such as which components are 
used and how they are used), networking hardware 

Table 7 – Vulnerabilities in embedded TCP/IP stacks over the years

https://www.securityfocus.com/bid/59603/info
https://www.kb.cert.org/vuls/id/210620
https://us-cert.cisa.gov/ics/advisories/ICSMA-17-250-02A
https://nvd.nist.gov/vuln/detail/CVE-2017-1000210
https://blog.zimperium.com/freertos-tcpip-stack-vulnerabilities-details/
https://us-cert.cisa.gov/ics/advisories/icsa-19-318-01
https://www.forescout.com/company/blog/solving-urgent11-identifying-vxworks-and-defending-ot-devices/
https://us-cert.cisa.gov/ics/advisories/icsa-20-105-08
https://www.forescout.com/company/blog/identifying-and-protecting-devices-vulnerable-to-ripple20/
https://www.windriver.com/
https://treck.com/


FORESCOUT RESEARCH LABS 16

and driver (such as what functions are offloaded to 
dedicated hardware) and the target platform (such as 
CPU architecture).

• Potential impact, i.e., what the impact can be of 
exploiting these vulnerabilities. We discuss that 
although most vulnerabilities in TCP/IP stacks are 
denials of service (that might be seen as non-critical), 
impact is highly contextual to a specific device and 
use case (e.g., a DoS is very dangerous in mission-
critical devices).

4.1. Which components are  
typically flawed?

A typical TCP/IP stack is composed of different parts 
that handle different protocols, which we hereby call 
components. In Figure 2, we can see that the most 
affected components in our sample of vulnerabilities 
are the DNS, TCP and IPv4/IPv6 sub-stacks, followed 
by DHCP, ICMP/ICMPv6, ARP and others. The only 
vulnerability that stands out is CVE-2020-11904 (part 
of Ripple20), which was discovered within the memory 
allocator component used by the Treck stack. Most of 
the vulnerabilities in AMNESIA:33 impact the DNS, IPv6 
and TCP components.

RESEARCH REPORT  |  AMNESIA:33  |  A comparison with similar studies

Mem. allocator

NBNS

Ethernet

DHCPv6

IGMP

ARP

ICMPv6

ICMP

DHCP

IPv4

IPv6

TCP

DNS

0 5 10 15 20 25

Affected Components

Overall Percentage

AMNESIA:33 Ripple20 URGENT/11 Other

Figure 2 – Components of popular TCP/IP stacks affected by vulnerabilities

https://nvd.nist.gov/vuln/detail/CVE-2020-11904
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1 For example, MITRE lists almost 900 weaknesses divided into more than 300 categories in its CWE framework.

Division by zero

Other (not memory-related)

NULL-ptr. deference

State confusion

OOB-W

Integer overflow

OOB-R

0 5 10 15 20 25 30 35 40 45

Vulnerability Types

Overall Percentage

AMNESIA:33 Ripple20 URGENT/11 Other

Figure 3 – Types of vulnerabilities found in popular TCP/IP stacks

Vulnerabilities in the IP and TCP substacks are 
particularly interesting since they are independent of 
applications running on top of them. Vulnerabilities in 
the IP substack do not even require a TCP or UDP port 
to be open for a device to be exploited. Some vulnerable 
implementations also first attempt to fully parse 
incoming TCP/UDP packets before checking for existing 
connections, allowing them to be exploited even when 
there are no open ports.

DNS appears to be a vulnerability-prone component 
because it is a complex, feature-rich protocol, different 
from many other components in the stack. Indeed, the 
DNS component is a client that usually communicates 
with a few standard servers rather than a server that 
communicates with many other clients; this may lead 
to errors in the implementations. A possible mitigation 
of this complexity that we have seen is the OpenBSD 

implementation, which relies on pledges to isolate 
DNS processing and limit the effects of vulnerabilities. 
However, as we will discuss below, this kind of mitigation 
is rare in embedded devices.

4.2. What are the most common 
vulnerability types?

Several taxonomies of vulnerability types exist in the 
literature, which can be more or less granular.1 To 
simplify our analysis, we use a categorization containing 
the five most common memory-related vulnerability 
types we observed, one common type that is not related 
to memory (state confusion) and a category of “other” 
less common issues that are not related to memory 
corruption (such as race conditions and improper 
random number generation).

https://cwe.mitre.org/
https://man.openbsd.org/pledge.2
https://cwe.mitre.org/about/sources.html
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Figure 3 shows a breakdown of the issues in our sample 
by these vulnerability types, the most important being:

• Out-of-Bounds Read & Write (OOB-R and OOB-W): 
TCP/IP and the various protocols built on top of 
it have a variety of attacker-controlled length and 
offset fields that influence memory manipulation 
operations and, as such, require proper memory 
bounds checking.

• Integer Overflow: The length and offset fields are 
often incorporated in arithmetic operations during 
assignments or comparisons. Given that integer 
representations have a fixed size, it is important 
to take the upper and lower bounds of that size 
into account before applying those operations 
because if a value grows larger than the maximum 
or smaller than the minimum, it wraps around the 
bound and ‘comes out the other side.’ Truncation 
and signedness issues because of type casting also 
play a role here. Often, an integer wraparound can 
be used as leverage to cause an out-of-bounds read 
or write. In some cases, integer overflows may lead 
to infinite loops (e.g., when parsing TCP options or 
IPv6 extension headers) in cases when the overflown 
variable has impact on the exit condition of the loop.

• State Confusion: Stateful protocol handling requires 
carefully keeping track of the current state and 
session information of a given connection. Even 
in stateless protocols, one must typically perform 
request-reply matching to ensure that an incoming 
reply is the response to a previously sent request. 
Incorrectly implemented or overly permissive state 
machines and ambiguous protocol specifications 
can result in state confusion bugs, which in turn can 
result in a misalignment between internally stored 
data and expectations around subsequent incoming 
data. 

• Null Pointer Dereferences: A common case of illegal 
or dangling pointer dereferences where an unmapped 
or protected memory address is read from or written 

to. Depending on target memory organization, 
protection and fault handling this can result in Denial-
of-Service or, if the dangling pointer’s contents are 
attacker-controllable, sometimes even Remote Code 
Execution. 

• Division by Zero: This happens when an arithmetic 
operation has a divisor equal to zero, which is 
undefined behavior and can result in an error or 
exception.

A good example of request-reply matching issues 
(state confusion) in AMNESIA:33 is CVE-2020-17439, 
which affects uIP. The stack does not sufficiently 
check whether incoming DNS reply packets match the 
outgoing DNS queries. Attackers only need to wait until 
there are any outgoing DNS queries from a vulnerable 
device and send any DNS reply with a matching DNS 
transaction ID. Since transaction IDs in this stack are 
not properly randomized (can only be between 0x00 
and 0x03), this reply will be accepted by the stack. It is 
trivial for attackers to leverage this vulnerability to either 
perform DNS cache poisoning attacks (thus injecting 
malicious DNS records) or to exploit other vulnerabilities 
that may be present within the DNS reply processing 
functionality (e.g., see CVE-2020-17440 and CVE-2020-
24334 described below).

In the following “Technical Dive In,” we analyze at length 
an example in AMNESIA:33 that showcases the integer 
overflow and OOB-R/W types of vulnerabilities.

RESEARCH REPORT  |  AMNESIA:33  |  A comparison with similar studies
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Integer Underflow and OOB-R/W  
in AMNESIA:33

An illustrative example of a combined integer overflow 
and OOB-R/W issue is CVE-2020-17443 in PicoTCP. The 

TECHNICAL DIVE IN

vulnerable code is located within the pico_icmp6_send_
echoreply() function that prepares ICMPv6 echo reply 
packets to be sent in response to incoming ICMPv6 echo 
requests (see Figure 4).

Figure 4 - CVE-2020-17443

Here, the memory for an ICMPv6 response header and 
payload (reply) will be allocated based on the size of a 
request header and payload echo->transport_len (line 68); 
various fields of the reply packet will be set based on the 
echo packet (lines 74-89), and the reply will be queued for 
sending (line 90). In particular, the reply payload is being 
copied directly from the echo payload using the memcpy() 
function call (line 84). Here, the size of the memory copy is 

the ICMPv6 length minus the minimum possible ICMPv6 
header length of 8 bytes (defined in the PICO_ICMP6HDR_
ECHO_REQUEST_SIZE constant).

The code that accepts ICMPv6 echo request packets 
(omitted for brevity) will process any packets that appear 
to have an ICMPv6 header, even when it is shorter than 8 
bytes. In fact, it only checks that the first byte after the IP 
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header is 0x80 (ICMPv6 echo request). The attackers have 
explicit control over echo->transport_len, and if this value 
is shorter than 8 bytes, the arithmetic operation in the third 
argument of the memcpy() call (line 84) will underflow, 
resulting in a large unsigned value. memcpy() will write out-
of-bounds of the reply->payload. 

While RFC 1256 hints that the minimum size of the ICMP 
message should be 8 bytes (for a router solicitation 
message), it is not stated explicitly that packets with ICMP 

TECHNICAL DIVE IN

payloads smaller than 8 bytes must be discarded when 
processing ICMP echo request messages.

Sometimes, integer overflow bugs may not necessarily lead 
to OOB-R/W vulnerabilities but exist side-by-side with them, 
allowing attackers to achieve different goals. An illustrative 
example from AMNESIA:33 is CVE-2020-17437, affecting 
uIP (shown in Figure 5). This vulnerability stems from the 
misuse of the Urgent pointer, yet it is different from the 
vulnerabilities reported as part of URGENT/11.

Figure 5 – CVE-2020-17437 (the source)

The root cause of the issue resides in the uip_process() 
function that handles incoming IPv4 packets. Figure 5 
shows the code fragment that will be executed after a TCP 
handshake when a client sends TCP data to the stack. 
If the TCP Urgent flag is set (line 1642), and the stack is 
configured to handle the Urgent data (UIP_URGDATA > 0), 
the code fragment will get the Urgent offset from the packet 

(uip_urglen) and prepare the stack for receiving out-of-band 
data (lines 1644-1652). 

However, by default, the stack is not configured to receive 
out-of-band data (the UIP_URGDATA constant is set to 0). 
Thus, upon receiving a TCP packet with the Urgent flag 
set, lines 1656 and 1657 will be executed instead. Here, 
the stack attempts to remove the out-of-band data from 

https://tools.ietf.org/html/rfc1256
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the packet by moving the global incoming application data 
pointer (uip_appdata) past the Urgent data (line 1656) 
and adjusting the length of the TCP data by subtracting 
the Urgent data offset from the total TCP data length (line 
1657). Here, it is crucial that uip_appdata points within a 
global fixed-size statically allocated buffer uip_buf since this 
buffer holds all incoming network packets.

TECHNICAL DIVE IN

Further, uip_len is passed into the function uip_add_
rcv_next() that sets the “ack” number of the TCP ACK 
packet that the stack will send as a response. The global 
application data pointer uip_appdata is used by the UIP_
APPCALL() callback (see Figure 6) for treating the incoming 
application data. By design, re-implementing this callback 
provides the ability to treat the application data in different 
ways (e.g., FTP, HTTP webserver or any other custom 
applications on top of the TCP protocol).

Figure 6 – CVE-2020-17437 (the sinks)

At this point, the attackers control three things: (1) the 
global uip_appdata pointer, which will be set to point to the 
first TCP data byte after the TCP header; (2) uip_len ¬– the 
length of the TCP data received by the stack; and (3) the 
Urgent data offset, which is taken directly from the TCP 
header ((BUF->urgp[0] << 8) | BUF->urgp[1]). 

As none of these values are properly validated, attackers 
can craft TCP packets with arbitrary Urgent data offsets, 
achieving several side effects: (1) the uip_appdata pointer 
may be incremented by a large offset, pointing out-of-
bounds of the packet (and even out-of-bounds of uip_buf); 
(2) uip_len is only two bytes wide; therefore, short packets 
with Urgent offset larger than it will cause the value of uip_
len to overflow after the arithmetic operation at line 1657, 
which can lead to a denial of service on a device running 
this stack or have other consequences.

For example, if attackers send a packet with a small amount 
of TCP data (e.g., a single byte) and slightly larger Urgent 
data offset (e.g., 0x02), uip_len will overflow and become a 
large 2-byte value (0xffff). At the same time, uip_appdata 
will be advanced by the small Urgent offset (0x02), and 
it will still point within the range of uip_buf. This has the 
following side effect: The uip_add_rcv_nxt() function uses 
the uip_len value to increment the “ack” field of the response 
to be sent: The “ack” value of the incoming packet will be 
added to the resulting uip_len (see Figure 7).
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TECHNICAL DIVE IN

Figure 7 – CVE-2020-17437 (Indirect information leak)

This implementation quirk essentially allows attackers to 
identify that this vulnerability exists without disrupting the 
operation of the device (indirect information leak).

If, on the other hand, we set a large Urgent data offset 
(e.g., 0xffff), the uip_appdata pointer will be pointing way 
past uip_buf (most likely at an invalid address), causing 

memory corruption wherever the uip_appdata pointer is 
dereferenced. As noted above, the actual point at which 
the invalid pointer is accessed (and other potential impact 
vectors) depends on a specific implementation of the UIP_
APPCALL() callback.

4.3. Common anti-patterns

Anti-patterns, also known as negative patterns, describe 
similar solutions to a common problem that may lead 
to negative consequences. In our case, an anti-pattern 
is a certain logic that is implemented in the same way in 
different stacks, thus leading to similar vulnerabilities.

By analyzing our sample of vulnerabilities (including 
AMNESIA:33), we understood that the most common 
anti-patterns come down to three bad development 
practices:

• A general absence of basic bounds checks and 
integer overflow checks.

• A misinterpretation or mis-implementation of RFC 
documents that define various protocols. Of course, 
at the same time, several aspects of specific RFCs are 
not strictly defined, leaving a large room for error (for 
instance, see the “Technical Dive In” example of CVE-
2020-17443).

• A heavy reliance on ‘shotgun parsing,’ which is the 
bad practice of mixing input validation and processing 
in a manner that facilitates the processing of only 
partially validated data.

From the analysis, it became clear that implementing 
the same protocols under similar constraints tends 
to produce similar bugs in similar places, providing 
vulnerability researchers with what is essentially a corpus 
of anti-patterns (i.e., similar known vulnerable pieces of 
code) and prioritized components on which to focus their 
efforts. 

In AMNESIA:33 and the previous vulnerabilities, 
what stands out in common are generic issues with 
calculating and/or validating header and field lengths, 
properly parsing various header option fields, ensuring 
that there is enough data in the packet (in contrast 
to relying on what is specified in the header) and 
handling the notoriously vaguely specified TCP Urgent 
pointer. This is followed by issues with fragmentation 
reassembly, IP tunneling and request-reply matching.

http://langsec.org/papers/langsec-cwes-secdev2016.pdf
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In relation to AMNESIA:33, we have noticed the following 
anti-patterns not covered by previous research.

DNS domain name length. When processing domain name 
entries, the parsing code must ensure that the value of 
the length byte of a domain name label corresponds to 
the number of bytes within the label. To spot a vulnerable 
implementation, it is often enough to find a loop (or a 
standalone function called within a loop) that processes 
domain names and has the following behavior: 

• It takes the first byte of the label as the length variable 
and uses this length as the offset for advancing 
an internal packet data pointer without performing 
sufficient bounds checks. 

• Additional checks should be carried out to ensure the 
maximum length of the label cannot be more than 63 
bytes (e.g., 0xff is not a valid length of a label), and the 
maximum length of a domain name cannot be more 
than 255 bytes (RFC 1035). Also, only alphanumeric 
characters, digits and hyphens should be accepted as 
valid characters within a domain name (RFC 1035).

DNS domain name NULL termination. Most of the 
observations for the above anti-pattern apply here as well. 
Additionally, the vulnerable code may use a function that 
returns the length of a domain name within a DNS packet 
and expects that it is explicitly NULL-terminated (e.g., 
strlen() as in the “Technical Dive In” example of CVE-2020-
25111). If this length is then used as an offset for memory 
operations without proper bounds checks, the code is  
most likely vulnerable.

IPv6 extension headers and options. Parsing of extension 
headers or specific options of an extension header (or 
all of them together) is typically done within a loop that 
incorporates a “switch” conditional statement. We made the 
following observations for vulnerable implementations:

HIGHLIGHTS

• Variables that store the length of a specific extension 
header or the length of an individual option have either 
direct or indirect impact on the exit condition of the loop. 
These variables lack sufficient bounds checks to ensure 
that the data being parsed is within the packet limits and 
that the loop advances forward within the packet with 
each iteration. Sometimes, these variables can be 8 or 16 
bytes long so that integer overflows may occur.

• Some implementations may contain flaws that are not 
relevant to memory corruption issues but can still have 
similar consequences like a successful Denial-of-Service 
attack. Therefore, it is worthwhile to spend more time 
to analyze whether the exit condition of the parsing 
loop can be abused (in a Technical Dive In we show the 
example of CVE-2020-17445, which allows attackers 
to either corrupt memory or achieve an infinite loop, 
depending on the input).

Relevant RFCs must be followed as strictly as possible. 
For example, the specific order of IPv6 extension headers 
should be maintained, and some headers, such as Hop-by-
Hop extension, must not appear more than once within a 
packet (RFC 2460).

https://tools.ietf.org/html/rfc1035
https://tools.ietf.org/html/rfc1035
https://tools.ietf.org/html/rfc2460
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DNS domain name issues in AMNESIA:33

Figure 8 shows an example of how domain labels and 
names can be encoded within a DNS packet: Domain names 
may consist of one or multiple labels, where for each label 
the first byte represents the length of the label in bytes and 
the remaining bytes are alphanumeric characters of the 
label itself (some special characters are allowed as well). 
Labels can be chained into more complex domain names, 
but the very last byte of the domain name must always 

TECHNICAL DIVE IN

be the NULL (0x00) byte, explicitly indicating where the 
domain name ends. For example, the domain name from 
Figure 8 starts with the byte 0x06 that indicates the length 
of the first label, followed by the bytes that correspond to 
the first label (0x67 0x6f 0x6f 0x67 0x6c 0x65 == “google”), 
continues with the length of the second label 0x03, the 
bytes that correspond to the second label (0x63 0x6f 0x6d 
== “com”) and ends with the NULL terminator byte (0x00).

Figure 8 – An example of DNS domain label/name

One illustrative example for vulnerable DNS domain name 
parsing functions is related to CVE-2020-25111 that affects 
Nut/Net (the ScanName() function on Figure 9). Initially, cp 
is the pointer to the first byte of the domain name being 
parsed (i.e., the length byte of the first label), and *npp is the 
buffer into which the domain name is being copied while 
parsing. The code will read the total domain name length 
into the rc variable using the strlen() function (line 182) 
and allocate the *npp buffer based on rc (line 183). It then 

will start parsing individual labels (lines 185-189) by first 
assigning the length of the first label to len and then copying 
labels into *npp byte by byte.
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Figure 9 – CVE-2020-25111

The ScanName() function lacks the necessary bounds 
checks:

1. The strlen() function (line 182) will return the amount 
of bytes in a sequence until the first NULL byte (0x00) 
is encountered. In this case, by specifying arbitrary 
sequences of bytes with the NULL byte placed at 
specific offsets of the packet (and outside of it), 
attackers can control the size of the heap-allocated  
*npp (line 183).

2. The length of a label (len) is taken directly from the 
packet and used as the “while” loop condition without 
any proper bounds checks. By setting arbitrary values to 
this length, attackers control the number of bytes written 
into the *npp buffer (up to 255 bytes).

To exploit the vulnerability, attackers may set arbitrary 
values to the label lengths (len), causing out-of-bounds 
writes past the domain name buffer (*npp) and corrupting 
the memory. By carefully choosing a sequence of 
malformed domain name labels and placing NULL 
terminator bytes, attackers may have the ability to perform 
controlled OOB-W within the heap memory. This can lead to 
a remote code execution, as discussed in the Technical Dive 
In in Section 4.4.

Another category of issues related to processing DNS 
replies, identified within the AMNESIA:33 research, is when 
the number of response records specified in a DNS header 
of the reply packet does not correspond to the actual 
amount of response records available. A good example is 
CVE-2020-24334 that affects uIP.
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Figure 10 – An excerpt from a DNS response packet

Figure 10 shows an excerpt from a DNS response packet. 
The DNS header consists of a sequence of bytes starting 
with the transaction ID, flags, the number of questions, the 
number of response records, the numbers of authority and 
additional response records. After the DNS header, a packet 

contains specific question record(s) (must be the exact 
number of question records specified in the header) and 
response record(s) (must me the exact number of response 
records specified in the header).
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Figure 11 – CVE-2020-24334

Figure 11 illustrates an excerpt from the vulnerable DNS 
packet processing function related to CVE-2020-24334 
(most of the code was omitted for brevity). Here, hdr 
is the pointer to the DNS header of the incoming DNS 
packet, taken from the global application data buffer uip_
appdata; the numbers of questions and response records 
(nquestions and nanswers) are taken directly from the 
header (lines 17 and 18); the queryptr pointer points at the 
beginning of a resource record (initially it points at the first 
question record); and the “while” loop (line 29) iterates over 
the response records updating the queryptr so that it jumps 
to the next response record on the next iteration of the loop.

The problem here is that attackers have explicit control 
over the nanswers variable (it can be set directly in the 
DNS header; see the example at Figure 10), as well as the 
queryptr pointer. Therefore, if a packet with a large number 
of response records (e.g., 0xff) set in the DNS header and 
a smaller value of actual response records (e.g., < 0xff) 
is being processed, queryptr will eventually point ouf of 
the bounds of the packet (line 30), and OOB-R (potentially 
a Denial-of-Service) within the function skip_name() will 
happen.
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IPv6 extension headers parsing in 
AMNESIA:33

We sketch the IPv6 extension headers processing 
vulnerabilities of AMNESIA:33 with one example: CVE-2020-
17445 affecting PicoTCP.

TECHNICAL DIVE IN

Figure 12 – CVE-2020-17445

Figure 12 shows the vulnerable function for processing 
the IPv6 Destination Options extension header (CVE-2020-
17445). This function parses the options present in this 
extension header one at a time. The option pointer points 
at the current option being parsed; the len variable initially 
contains the length of the extension header (and then is 
used to track the number of bytes being parsed, being the 
exit condition of the “while” loop); and the optlen variable 
reads the length of the current option being parsed.

The main issues of CVE-2020-17445 are the following:

• Attackers can explicitly control optlen by setting arbitrary 
length of an option within the Destination Options 
extension header, and there are no sanity checks for the 
value of this variable.

• Attackers can implicitly control len (line 27) that is used 
within the exit condition of the “while” loop (line 8), and 
there are no sanity checks for the value of this variable.
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• Attackers can implicitly control the option pointer (line 
26), and there are no bounds checks ensuring that this 
pointer is pointing to the data within the packet being 
processed.

Thus, by sending a carefully crafted packet, attackers can 
achieve OOB-R (potentially a Denial-of-Service) by shifting 
the option pointer into the unmapped memory. With this 
degree of control, attackers may also cause a “silent” 

Denial-of-Service: The “while” loop will never terminate, and 
the stack will not process other incoming packets. The 
optlen variable is an unsigned 8-bit integer; therefore, it 
may overflow after the arithmetic operation at the line 9. If 
attackers manage to cause an overflow such that optlen 
becomes 0x00 at line 9 (i.e., by setting an option length to 
0xfe), the values of option and len will not change at the 
lines 26 and 27, and the loop will iterate indefinitely. 

4.4. What about exploitability?

Whether a vulnerability in a protocol stack is exploitable 
on any actual device depends on many factors, such as 
configuration settings, target platform, the presence of 
exploit mitigations and the freedom the attacker has in 
shaping the target’s memory and state. 

It is well-known that embedded systems – IoT and 
OT devices – usually lack the hardware, software or 
resources required to deploy modern exploit mitigations, 
such as non-executable data memory (also known 
as ESP, DEP, NX and W^X), address space layout 
randomization (ASLR) and stack canaries for protection 
against memory corruption exploitation. 

The RTOSes that typically run on embedded systems 
rarely offer appropriate memory segmentation and 
privilege separation ‘out of the box.’ Thus, application, 
networking and OS code often all run in the same flat 
address space.

This combined lack of exploit mitigations and memory 
protection in embedded systems tends to render 
exploitation significantly easier than on modern IT 
devices, such as servers or laptops, thus increasing the 
risk posed by issues on these systems. 

This also means that the impact of a vulnerability 
will manifest differently on different devices. During 

our study, we performed a thorough analysis of the 
vulnerabilities described in Table 7 to understand their 
exploitability and potential impact. We found that 
exploitability is influenced heavily by the following 
factors:

• Stack configuration: TCP/IP stacks are highly 
configurable, allowing for enabling and disabling 
various substacks, specifying buffer sizes, selecting 
different kinds of memory allocators, regulating 
interaction with network drivers and handling 
debugging functionality. For example, we found some 
bounds checks implemented as part of assertion 
predicates, which are often turned off in production, 
so the exploitability of some issues depends on the 
assertion configuration.

• Networking Hardware & Driver: TCP/IP stacks 
typically ‘talk’ to network interface abstraction code, 
which in turn talks to a NIC (or MAC) driver to translate 
between the specifics of a piece of networking 
hardware and a generic API. TCP/IP stacks often can 
be configured to offload packet validation and filtering, 
and certain network controllers do so autonomously 
regardless of stack configuration. Depending on the 
nature of a vulnerability, this can influence whether a 
malicious packet ever gets to reach the code it seeks 
to exploit. 

https://research.tue.nl/en/studentTheses/kintsugi
https://www.syssec.ruhr-uni-bochum.de/media/emma/veroeffentlichungen/2019/04/18/uArmor-EuroSP19.pdf
https://en.wikipedia.org/wiki/Executable_space_protection
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/Stack_buffer_overflow#Stack_canaries
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• Target Platform: In some cases, exploitability of an 
issue is highly dependent on the target’s hardware 
architecture and configuration. For example, CVE-
2018-16524 affects the FreeRTOS+TCP stack by 
allowing an attacker to provide an MSS value of 0 and 
cause a division-by-zero, which can lead to a DoS. 
However, the handling of division-by-zero depends on 
the target platform, and in some flavors of ARM, the 
division can return a value of 0 and not an exception, 
thus rendering the vulnerability unexploitable.

It is crucial to keep in mind that a device that uses a 
particular IP stack will not automatically be exploited. 
Even when a vulnerability on a device can be exploited, 
the impact of a vulnerability varies greatly.

TECHNICAL DIVE IN

Exploiting CVE-2020-25111

CVE-2020-25111 is a classic heap buffer overflow 
occurring during the processing of the name field of a DNS 
response resource record. An attacker can control the size 
of the allocated buffer while writing an arbitrary number 
of bytes to it, allowing the attacker to corrupt adjacent 
memory, including metadata of other heap nodes. Nut/
OS (the OS that runs the Nut/Net stack) uses a single, 
non-segregated, singly linked free-list in combination 
with a deterministic, best fit, address ordered allocation 
algorithm which performs forward coalescing. Heap guards 
are optional and static. Heap nodes consist of a metadata 
structure followed by the data itself, as follows:

struct _HEAPNODE { 

 size_t hn_size;     /* Size of this node. */ 

 HEAPNODE *hn_next;  /* Link to next free   

 node. */ 

}; 

HEAPNODE *heapFreeList;

To exploit CVE-2020-25111, an attacker can abuse the 
fact that Nut/Net’s DNS component allocates and frees 
resource record fields of sequential answers on the 
heap and uses this for granular heap shaping. Consider 
the following Nut/Net code, together with the function 
ScanName that was shown in Figure 9:

static uint16_t ScanBinary(uint8_t * cp, uint8_t 

** npp, uint16_t len) { 

 if (*npp) 

 free(*npp); 

 *npp = malloc(len); 

 memcpy(*npp, cp, len); 

 return len; 

}

static uint16_t DecodeDnsResource(DNSRESOURCE * 

dor, uint8_t * buf) { 

 uint16_t rc; 

 rc = ScanName(buf, &dor->dor_name); 

 rc += ScanShort(buf + rc, &dor->dor_type); 

 rc += ScanShort(buf + rc, &dor->dor_class); 

 rc += ScanLong(buf + rc, &dor->dor_ttl); 

 rc += ScanShort(buf + rc, &dor->dor_len); 

 rc += ScanBinary(buf + rc, &dor->dor_data,   

 dor->dor_len); 

 return rc; 

} 

... 
for (n = 1; n <= (int) doh->doh_answers; n++) { 

 dor = CreateDnsResource(dor); 

 len += DecodeDnsResource(dor, pkt + len); 

 if (dor->dor_type == 1) 

 break; 

}

https://nvd.nist.gov/vuln/detail/CVE-2018-16524
https://nvd.nist.gov/vuln/detail/CVE-2018-16524
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Here, an attacker can send a DNS response with two 
answers. The first answer’s resource record has a name 
and data field with carefully chosen sizes to ensure 
beneficial allocation and create a situation where the node 
holding dor->dor_name directly precedes the node holding 
dor->dor_data which in turn is followed directly by a free 
node. Due to reasons that are out of scope for this report, 
we require an allocated node in between our target-free 
node and our overflown node when the overflow happens.

The second answer has a resource record with a malicious 
name, causing an allocation of a size identical to the first 
answer’s name size. Since that node was just freed, the 
best-fit allocator will allocate this name at the exact same 
position, right in front of the still allocated dor->dor_name 
and subsequent free node. Then the overflow happens, and 
we overwrite both the allocated node and the metadata of 
the free node. When the code starts processing the data 
field, it will deallocate the (now corrupted) previous node 
and allocate a new one of a size we control. The allocator 
will walk the free list until it encounters our corrupted node 
whose hn_next field will redirect the allocator to a target 
memory area of our choice. If the size_t value located there 
matches the requested allocation size of our data, the 
allocator will think it has found a best fit ‘node’ and ‘allocate’ 
the new dor->dor_data at an address of our choice. 
Subsequently, the code will copy a number of bytes under 
our control to that location.

We can abuse this controlled allocation to form a write 
primitive that we can use to corrupt data or code of 
interest and get RCE. In our case, we used it to overwrite 
the local stackframe metadata (including the saved return 
address) of NutDnsGetResource parent function so that 
upon function return, we hijack control-flow. There are a 
few limitations on how we have to craft our malicious DNS 
reply, but the most significant one is that the size_t value 

located at our target memory during controlled allocation 
needs to be both known to us and present a reasonable 
size. Luckily, NutDnsGetResource has a few local stack 
variables that are suitable for this purpose, including raddr, 
which will be set to the IP source address of our malicious 
packet as a value we control and can set to anything we like.

Using the above materials, we can create an exploit that 
redirects control-flow to a ROP chain that will ensure cache 
coherency on architectures that require it (e.g., ARM, MIPS) 
and finally shellcode of our choice. Exploitability of this 
vulnerability is determined by a few factors:

1. Whether the DNS component is enabled and used 

2. Target platform and architecture (e.g., memory 
protection and organization, word sizes, etc.)

3. Baseline heap activity intensity

4. Heap allocator used

5. Exploit mitigations used (e.g., NX, ASLR, etc.)

Factor 3 can be mitigated by having more extensive heap 
shaping activity using additional DNS answers. Factor 4 
is most likely irrelevant in practice since Nut/OS seems to 
heavily favor using its own allocator which we described 
briefly above. Factor 5 is irrelevant in practice since Nut/OS 
has no mitigation support. (It does not even have regular 
memory protection support.)
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The impact of memory protection on  
TCP/IP stack vulnerabilities

The common lack of support for memory protection or 
segmentation in embedded devices means that some 
OOB-R and OOB-W vulnerabilities might not cause a 
crash immediately since there is no protected or (un)
mapped memory that would cause a fault handler to be 
invoked. That does not mean that a crash cannot occur, 
but it is more likely that this will be very unpredictable, for 
example by corrupting some piece of memory that at a 
later point in time gets used by the program in a way that 
causes unexpected behavior or by reading from or writing 
to memory mapped peripherals causing unexpected 
interactions with other system components. 

HIGHLIGHTS

A side note on fuzzing

Besides the impact on exploitability, the lack of memory 
protection may help to explain why some of these 
vulnerabilities have not been reported before. If someone 
fuzzes a device in a black-box fashion over the network or 
using an emulated image, then they are unlikely to trigger a 
crash soon after a test case is sent, which makes it seem 

4.5. What is the actual danger?

When publishing vulnerability advisories, researchers and 
vendors try to define the impact type of a vulnerability, 
namely the type of harm an attack could cause if the 
vulnerability were exploited. Figure 13 gives a breakdown 
of the vulnerabilities in our sample by these potential 

like there is no issue, while in reality the corruption is now 
latent in the device. Regular penetration tests, stress tests 
and device standards compliance tests (e.g., IEC 62443-4) 
are likely to take place in such a black-box fashion and 
conclude there is no issue. Since we fuzzed the source-code 
in a memory protected environment, this allowed us to 
tightly couple test cases to crashes.

The absence of memory protection and segmentation, while 
making devices more vulnerable, ironically also renders 
some impacts less reliable. On the other hand, it does mean 
that an exploited device will not shut down, hang or reboot 
‘safely’ and in a controlled way through a fault handler.

This is another complicating factor in determining impact, 
since on one device there might be memory protection 
support while on another there might not be, adding a lot of 
nuance.

impacts, but this requires some explanation. Figure 13 
shows what we call the “immediate impact,” namely the 
one assigned to a vulnerability based on a researcher’s 
judgement.

https://www.iecee.org/dyn/www/f?p=106:49:0::::FSP_STD_ID:33615
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However, only relying on the immediate impact can 
lead to missing the real potential of a vulnerability. For 
instance, an out-of-bounds read that is associated by the 
researchers to an information leak also could be turned 
into a denial-of-service if the attacker attempts to read 
from unmapped or protected memory to exploit it, hence 
causing a segmentation fault. Similarly, a vulnerability 
reported as a denial-of-service may be turned into 
remote code execution under the right circumstances.

This means that the real impact is highly contextual. For 
example, an information leak that discloses a few bytes 
from memory might not have Heartbleed implications, 
but it could very well become part of a larger exploit 
chain with far more significant impact than the sum of 
its parts. 

Another factor to consider when discussing the real 
impact of a vulnerability is what component it affects. 
RCE in the IP stack is different from RCE in applications 
(e.g., DNS or HTTP) since in the former case the target 
does not need to be listening actively on any port for 
the packet to be fully processed. As a result, RCEs on 
IP stacks are far more dangerous since they have the 
potential to breach firewalled and hardened hosts.

Finally, another key factor for which to account is what 
type of device runs the vulnerable code. For example, 
denial-of-service is often considered significantly less 
important than remote code execution, but this is not 
the case in critical OT environments where availability 
is crucial. RCEs in critical embedded devices can be 
used to commit fraud in a smart meter, breach corporate 
networks via building automation and routers, VPNs, 
firewalls or gateways, or attempt to cause physical 
damage on a safety controller.

To disrupt or damage a critical operation, an attacker 
could leverage a vulnerability in the TCP/IP stack of a 
PLC controlling the opening and closing of a dam. For 
the attack to be successful, the PLC needs to run the 
vulnerable component of the stack in the right hardware 
component. Indeed, in certain architectures, PLCs 
integrate Ethernet communications on the same CPU 
as the processor module, meaning that the attacker 
can easily reach the processor via an RCE on the 
Ethernet and take control of the device. However, in 
more modular architectures, Ethernet communication 
may be a separate module with its own CPU, making 
it harder for the attacker to get complete control of the 
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Figure 13 – Vulnerability impact categories within popular TCP/IP stacks
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https://en.wikipedia.org/wiki/Heartbleed
https://krebsonsecurity.com/2014/02/target-hackers-broke-in-via-hvac-company/
https://www.us-cert.gov/ncas/alerts/aa20-010a,%20https:/blog.talosintelligence.com/2018/05/VPNFilter.html
https://www.us-cert.gov/ncas/alerts/aa20-010a,%20https:/blog.talosintelligence.com/2018/05/VPNFilter.html
https://us-cert.cisa.gov/sites/default/files/documents/MAR-17-352-01%20HatMan%20-%20Safety%20System%20Targeted%20Malware%20%28Update%20B%29.pdf
https://us-cert.cisa.gov/sites/default/files/documents/MAR-17-352-01%20HatMan%20-%20Safety%20System%20Targeted%20Malware%20%28Update%20B%29.pdf
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PLC by exploiting the RCE in the Ethernet module. Once 
again, this shows how the real impact of a vulnerability 
is heavily dependent on the context surrounding the 
targeted device.  

This is something asset owners and network operators 
must keep in mind when assessing the impact a 
vulnerability can have in their environment. The real 
impact can be indeed very different from the assigned 
CVSS score, for good or for bad. In this regard, a help for 
asset owners comes from the Environmental Metrics 
of CVSS, which allow one to customize a vulnerability’s 
score based on the importance of an asset in the 
organization.

5. Estimating the reach of 
AMNESIA:33

5.1. Where you can see AMNESIA:33 – 
the modern supply chain

Figure 14 shows a few examples of components and 
devices that we identified running the vulnerable stacks. 
The AMNESIA:33 vulnerabilities can be found in products 
that range from embedded components (such as 
Systems on a Chip – SoCs, connectivity modules and 
OEM boards) to consumer IoT (such as smart plugs 
and smart thermostats), and from networking and 
office equipment (such as printers, switches and server 
software) to OT (such as access control devices, IP 
Cameras, RTUs and HVAC).

Figure 14 – Examples of components and devices running the vulnerable stacks

Network & Office
Examples: Printers, Routers, Servers

Consumer IoT
Examples: Smart Plugs, Smart Phones,

Sensors, Game Consoles

OT
Examples: Access Controls, IP Cameras,

Protocol Gateways, HVACs

Embedded Components
Examples: Systems-on-a-Chip (SoCs), Connectivity

Modules, OEM Boards

https://www.first.org/cvss/specification-document#Environmental-Metrics
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To understand the real reach of AMNESIA:33, we 
first need to understand how embedded devices are 
composed. Typically, IoT, OT and even IT devices found in 
enterprise and home networks are built up from several 
hardware and software components, including: 

• Microcontroller Units (MCUs), which are very small 
computers in single microchips. 

• Dedicated modules, which are hardware components 
that provide specific functions, such as Wi-Fi or USB 
connectivity. 

• Systems-on-a-Chip (SoCs), which are 
microprocessors with a number of integrated 
peripherals on the same chip.

• Original Equipment Manufacturer (OEM) boards, 
which provide ready-to-go system boards to be used 
in the product of another manufacturer. 

These components come from a device vendor’s supply 
chain (i.e., they are produced by other software and 
hardware component vendors, and they are “mixed and 

matched” based on different design constraints (such as 
specific lightweight TCP/IP stacks needed for low-energy 
or low-memory consumption in wireless sensors). Each 
of these components runs embedded software that may 
include a TCP/IP stack. 

It is seldom the case that the end user of a device has 
complete knowledge of all the hardware and software 
components that are present on it – known as a Bill of 
Materials, or BOM. On the contrary, it is often a surprise 
to see how many and which components eventually 
enter in the final product. For example, Figure 15 shows 
the components of a Broadlink Smart Plug. The plug 
contains the MediaTek MT7681 a popular Wi-Fi module 
that leverages the vulnerable stack uIP. There are several 
SoCs that are based on the MT7681, such as the To-
Link TMA1507A, the HiLink HLK-M30 and HLK-M35, the 
Scinan SNIOT505, the Ogemray GWF-KM22 and the 
Broadlink WT1SBS, WT1SBSL and WT1FBS. If we look at 
devices using Broadlink SoCs, we have examples such as 
the SP mini and MP1 smart plugs.

Figure 15 – Supply chain example, the Broadlink Smart Plug

Vulnerable TCP/IP
Stack (uIP)

MT7681 Module WT1SBS SoC Broadlink Smart Plug

In our study, we found that several Wi-Fi modules rely on uIP, probably due to its very small memory footprint.

HIGHLIGHTS

https://labs.mediatek.com/zh-cn/download/L6HE1sbD
http://www.trolink.cn/UploadFiles/Product/20160422162251_30068.pdf
http://www.trolink.cn/UploadFiles/Product/20160422162251_30068.pdf
https://www.cnx-software.com/2014/10/31/hi-link-hlk-m30-startkit-based-on-mediatek-mt7681-wisoc-sells-for-10/
https://fccid.io/2AD56HLK-M35/Letter/Cover-Letter-for-Request-Modular-Approval-2532373
https://fccid.io/2AFO5-SNIOT505/Letter/Modular-Approval-Request-2736017.pdf
https://fccid.io/YWTWF7681KMX/User-Manual/User-manual-2421044.pdf
https://fccid.io/2ACDZ-WT1/User-Manual/User-Manual-2672275.pdf
https://fccid.io/2ACDZ-3301SBSL/User-Manual/User-manual-1-3253081.pdf
https://fccid.io/2ACDZ-WT1FBS/User-Manual/Users-Manual-2772742.pdf


FORESCOUT RESEARCH LABS 36

RESEARCH REPORT  |  AMNESIA:33  |  Estimating the reach of AMNESIA:33

Another example, highlighting the security problems 
arising with long supply chains, is illustrated in Figure 
16, which is anonymized because of the criticality of the 
assets involved. We found Vendor A of UPS devices that 
relies on another Vendor B for its network management 
cards. Vendor B, in turn, integrates an embedded RTOS 
from Vendor C on these network managements cards. 
Finally, the embedded RTOS includes a vulnerable 

TCP/IP stack from Vendor D. The problem arises when 
Vendor C goes out of business (as it actually happened) 
and the RTOS for the network management card is no 
longer supported. This means that even if the uIP stack 
is patched, this patch will not become part of the RTOS 
distribution or the network management card, leaving the 
UPS un-patchable.

Figure 16 – Supply chain example, security issues on a UPS
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5.2. The challenge – identifying and 
patching affected devices

Ripple20 and URGENT/11 taught the community that at 
the time of disclosure, it is difficult to understand the real 
reach of vulnerabilities affecting TCP/IP stacks.

For example, Schneider Electric has released a security 
bulletin in response to URGENT/11 confirming that 
over 60 device series have been found affected, and 
this bulletin still gets regular updates even almost a 
year after the original disclosure of URGENT/11. Cisco 
in its original response to Ripple20 listed some of its 
devices as vulnerable but recognized that there were 
still devices under investigation. Some vendors might 
remain unaware whether their products are affected for 
a long time after the original vulnerability disclosure. 
For instance, the vulnerable version of the IPNet stack 
is quite old (released circa 2006-2007), and it since has 
been integrated into many products of many vendors.

Yet, after almost a year since URGENT/11 and a few 
months since Ripple20, both sets of vulnerabilities 

are thought to affect hundreds of millions of devices, 
including categories of devices that clearly underline 
the criticality of embedded TCP/IP stacks. When we 
investigated Forescout’s Device Cloud, we saw more than 
32,000 instances of IPNet (on VxWorks) in July, 2019 
and more than 90,000 instances of Treck in June, 2020 
using signatures such as OS classification, application 
banners and DHCP request fingerprinting. These product 
categories include industrial controllers from ABB, 
Siemens, Schneider Electric, Rockwell Automation and 
others; healthcare systems from Philips, GE, Baxter and 
others; networking equipment from Cisco, SonicWall and 
others; as well as enterprise devices such as printers and 
VoIP phones from HP, Alcatel-Lucent and others.

AMNESIA:33 affects multiple stacks that are not owned 
by a single company but maintained as open source 
projects. After their code is published on a collaborative 
repository, such as GitHub or SourceForge, new forks and 
the appearance of a variety of versions of the code are 
almost inevitable. 

https://www.se.com/ww/en/download/document/SESB-2019-214-01/
https://www.se.com/ww/en/download/document/SESB-2019-214-01/
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-treck-ip-stack-JyBQ5GyC
https://www.forescout.com/company/blog/solving-urgent11-identifying-vxworks-and-defending-ot-devices/
https://www.forescout.com/company/blog/identifying-and-protecting-devices-vulnerable-to-ripple20/
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The risk is that these vulnerabilities can spread easily 
and silently across multiple codebases, development 
teams, companies and products since these stacks form 
the basis of other software, operating systems, SoCs, 
embedded modules and development boards used to 
create a multitude of devices. This can happen because 
of the integration of faulty code in a project or because 
a new project starts as a fork of a vulnerable one. Below, 
we describe some of these situations that we observed 
with AMNESIA:33.

• uIP started as a standalone project, which then 
became part of the Contiki OS. Contiki became a 
popular operating system for the Internet of Things, 
and then was branched into Contiki-NG. Contiki also 
forms the basis of the Thingsquare IoT platform, 
which is used by companies such as ABB and 
Electrolux. Some of these versions of uIP, such as 
Contiki-NG and Thingsquare, are still maintained and 
some are not, such as the original uIP 1.0, but they are 
all still available for download and use. 

• The NuttX RTOS started by importing uIP, but then 
evolved its code independently. We could verify that at 
least one vulnerability still applies to NuttX. Similarly, 
parts of NuttX code can be found on Samsung’s 
TizenRT RTOS and the micro-ROS robotics OS.

• The open-iscsi project, which provides an 
implementation of the iSCSI protocol used by Linux 
distributions, such as Red Hat, Fedora, SUSE and 
Debian, also imports part of the uIP code. Again, we 
were able to detect that some CVEs apply to it. 

• The u-boot_mod project is a modification of UBoot 
1.1.4 for routers that includes, among other things, 
a web server based on uIP 0.9. This was based on 
D-Link firmware that also includes a webserver based 
on uIP 0.9. We saw at least the D-Link DIR 505 router 
running it. 

• The mDNS component of the nanostack used by the 
ARM mbed OS is a copy of FNET’s mDNS component, 

so CVE-2020-24383 applies to this new stack. We also 
found that Zephyr RTOS’ stack derives part of its TCP 
handling code from FNET, but in this case, we did not 
detect any vulnerability spreading. 

Open source code should make it easier to fix 
vulnerabilities. Ideally, when a new vulnerability is 
disclosed, any member of the project could prepare 
a security patch. However, during this research, we 
discovered that because of the many forks, branches and 
unsupported yet-available versions, it is difficult to get 
these patches applied everywhere.

We contacted the ICS-CERT and the CERT Coordination 
Center to help in the disclosure, patching and vendor 
communication for the AMNESIA:33 vulnerabilities. They 
in turn got the help of GitHub’s security team to find and 
contact affected repositories. Despite much effort from 
all the parties, official patches were only issued by the 
Contiki-NG, PicoTCP-NG, FNET and Nut/Net projects. At 
the time of writing, no official patches have been issued 
for the original uIP, Contiki and PicoTCP projects, which 
we believe have reached end-of-life status but are still 
available for download. Some of the vendors and projects 
using these original stacks, such as open-iscsi, issued 
their own patches.

5.3. Facing the challenge – estimating 
numbers

Identifying affected devices is even harder for open 
source stacks because their code can be reused easily 
and adapted across many projects. This deliberate 
fragmentation makes it much more challenging to 
account for the presence of a vulnerable component in a 
device.

To have an initial idea of the types, vendors and number 
of devices impacted by these new vulnerabilities, we 
looked at three data sources:

https://www.thingsquare.com/
https://github.com/JelmerT/thingsquare-mist
https://www.thingsquare.com/#cases
https://github.com/Samsung/TizenRT/blob/master/external/dhcpc/dhcpc.c
https://github.com/micro-ROS/
https://www.open-iscsi.com/
https://github.com/pepe2k/u-boot_mod
https://github.com/pepe2k/u-boot_mod/tree/master/u-boot/httpd
https://github.com/ARMmbed/mbed-os/tree/mbed-os-5.6/features/nanostack
https://github.com/zephyrproject-rtos/zephyr/blob/master/subsys/net/ip/tcp.c
https://github.com/zephyrproject-rtos/zephyr/blob/master/subsys/net/ip/tcp.c
https://us-cert.cisa.gov/ics
https://www.kb.cert.org/vuls/
https://www.kb.cert.org/vuls/
https://github.com/security/team
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1. Open source intelligence: We looked at product 
documentation, datasheets and licensing information 
that often mention open source components used 
by a device. For instance, the datasheet for some ICS 
controllers in the Siemens SIRIUS line mentions uIP. 
As another example, Netgear makes available the GPL 
code they use in their products. By looking at those, 
we could identify that some switch models run the 
Contiki OS.

2. Online devices: We queried Shodan, Censys and Fofa 
for devices having banners that indicate the use of the 
stacks (e.g., “Server: uIP/1.0” or “Server: uIP/0.9” for 
uIP). Interestingly, Fofa has predefined tags for some 
of the OSes or IP stacks, including app=”Thingsquare-
Contiki” for Contiki, app=”FNET-HTTP-Freescale-
Embedded-Web-Server” for FNET and app=”Ethernut-
Project” for Nut/Net. Figure 17 shows the result of a 
search for “Contiki” on Shodan.

Figure 17 – Query for “Contiki” on Shodan

3. Forescout Device Cloud: Device Cloud is a closed 
repository of information coming from devices 
monitored by Forescout appliances. We queried it 
for information such as OS classification, application 
banners and DHCP request fingerprinting, similar to 
what was done for Ripple20. 

Although we put a lot of effort into identifying reliable 
sources of information, all three sources mentioned 
above might occasionally lead to false positives. For 
instance, datasheets and product licenses may mention 
a component that is not used by a specific device (e.g., 
FreeRTOS ships with uIP and lwIP code, but either one, 

the other or a third stack is used, while the license may 
mention both), and online devices may have an HTTP 
server of one stack and then use another stack for other 
protocols. 

The main issue, however, lies with false negatives: We 
may not have enough information to identify the use of a 
stack on a device. For instance, in case the usage is not 
mentioned in the documentation, the device doesn’t have 
an application-layer banner, and it is not present on a 
Forescout customer. Therefore, we expect the numbers 
below to underestimate the actual numbers of vendors 
and devices.

https://cache.industry.siemens.com/dl/files/835/109755835/att_994003/v1/A5E35631562001A_RS-AD_004_201908071023052370.pdf
https://new.siemens.com/global/en/products/automation/industrial-controls/sirius.html
https://kb.netgear.com/2649/NETGEAR-Open-Source-Code-for-Programmers-GPL
https://kb.netgear.com/2649/NETGEAR-Open-Source-Code-for-Programmers-GPL
https://www.shodan.io/
https://censys.io/
https://fofa.so/
https://www.forescout.com/company/blog/identifying-and-protecting-devices-vulnerable-to-ripple20/
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After analyzing the data from the three sources 
aforementioned, we compiled a list of more than 
150 unique potentially affected vendors and device 
models. We also estimated the number of device units 
vulnerable in the wild in the order of millions. 

Below, we present some details of this analysis. We do 
not mention here vulnerable vendors or devices by name 
because investigations are still ongoing, but we present 
statistics about vendors, device types and device units.

5.3.1. How many vendors

Table 8 shows the number of vendors we identified using 
each stack. Notice that the “total unique” is not the sum 
of the rows for each stack because some vendors use 
more than one stack, and we only count them once. 
Vendors are divided in two: “component vendors” are 
those that sell RTOS, IoT stacks, MCUs, SoCs and other 
components used to create end consumer or enterprise 
devices, and “device vendors” are those that sell end 
devices directly to consumers or companies. 

Table 8 – Vendors identified

Stack Total vendors Component vendors Device vendors

uIP 125 26 99

Nut/Net 24 1 23

picoTCP 10 8 2

FNET 5 2 3

Total unique 158 36 122

5.3.2. What device types

Figure 18 shows a division, in macro categories, of the 
potentially vulnerable device models identified from the 
three data sources. The largest category is IoT, both 
enterprise and consumer, which includes devices such 
as cameras, environmental sensors (e.g., temperature, 
humidity), smart lights, smart plugs, barcode readers, 
specialized printers, audio systems for retail and a few 
healthcare devices. IoT is followed by OT equipment for 
Building Automation Systems, which includes devices 
such as physical access control, fire and smoke alarms, 
energy meters, batteries and HVAC systems. Then we 
have OT equipment for Industrial Control Systems, which 

includes devices such as PLCs, RTUs, protocol gateways 
and serial-to-ethernet gateways. Following is IT, which 
includes devices such as printers, switches and wireless 
access points.
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5.3.3. How many device units

Estimating the number of existing individual vulnerable 
device units is the most difficult task because some 
devices, such as PLCs, RTUs and other OT equipment, 
are known to be very popular but are rarely found online 
since they are not supposed to be internet-connected. 
Besides, device components are not always advertised 
in documentation or in network traffic, although popular 
SoCs are shipped by manufacturers in the order of 
millions per quarter.

Figure 18 – Device type distribution

Nevertheless, we found around 11,000 online instances 
of potentially vulnerable devices and more than 35,000 
instances on Device Cloud. Drilling down into the 
Device Cloud data, Figure 19 shows a distribution of the 
potentially vulnerable devices per industry vertical where 
they are deployed. The Figure shows that government, 
healthcare, services and manufacturing are the verticals 
with the highest number of potentially vulnerable 
devices.

Figure 19 – Potentially vulnerable devices per industry vertical
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Table 9 – Estimation of vulnerable devices, a breakdown

Stack Device Type Device Units (~) Source

uIP

IoT – Wi-Fi SoCs 10M Market Analysis

IT – Switches 5M Market Analysis

OT/BAS – Fire Control Panels 45k Case Study

Nut/Net OT/BAS – Temperature Sensors 13K Case Study

picoTCP
OT/BAS – HVAC 100k Case Study

OT/ICS – RTUs 200k Case Study

6. An attack scenario
Figure 20 shows a simplified, though realistic, network 
configuration for a typical enterprise, and it will be used 
to discuss how AMNESIA:33 could be exploited by a 
malicious actor to damage the enterprise. 

In our example, the enterprise has four locations: a retail 
branch, a home office, an enterprise HQ and a sub-
station. To facilitate our discussion, we will ignore the 
presence of internal network segmentation. However, 
to better reflect the reality, we assume that while the 
retail branch, the home office and the enterprise HQ are 
internet-connected, the sub-station is isolated and can 
only be accessed from within the Enterprise HQ network. 

Note that all the device types in Figure 20 have at least 
one instance that is vulnerable to AMNESIA:33. Namely, 
we found at least one device model that runs one of the 
vulnerable stacks.

We also extended this analysis by looking at marketing 
material about some specific device models, including 
case studies from vendors and market analysis from 
independent firms. Table 9 shows a breakdown of these 
data sources and the number of devices running the 
vulnerable stacks that we identified. Note that no public 

information related to the number of units running the 
FNET stack has been found at the time of writing. 

As with the previous numbers, the figures below are an 
underestimation because the marketing material was 
only available for a very limited number of devices.
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Figure 20 – How AMNESIA:33 threatens the Enterprise of Things

In this Figure, we highlight a possible attack scenario 
where the main goal for the attacker is to disrupt the 
functioning of the sub-station, which can lead to a major 
blackout. (Think of the 2015 attack on the Ukrainian grid.) 

To accomplish their goal, the attacker can obtain initial 
access from the retail branch or from an employee’s 
home office (points 1 in the figure), can move laterally 
to the enterprise HQ (point 2 in the figure), and from 
there they can finally reach the sub-station (point 3 in 
the figure) where they can cause the intended impact: a 
denial of view and control that prevents operators from 
monitoring and controlling the physical processes.
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Below, we provide the details on how an attacker can 
execute the steps above by exploiting some of the 
vulnerabilities in AMNESIA:33.

• Initial Access: To obtain initial access from the 
retail branch, we assume the attacker manages 
to exploit one of the RCEs in AMNESIA:33, namely 
CVE-2020-25111. In the Technical Dive in Section 
4.4, we discussed a proof of concept we run in 
our labs that shows how the vulnerability could 
be exploited. This vulnerability represents a good 
candidate for an attacker because it affects DNS, 
which is externally accessible and can usually traverse 
network boundaries, and because we have seen that 
several devices, including retail printers used for 

https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
https://attack.mitre.org/tactics/TA0001/
https://attack.mitre.org/tactics/TA0001/
https://attack.mitre.org/tactics/TA0008/
https://collaborate.mitre.org/attackics/index.php/Impact
https://collaborate.mitre.org/attackics/index.php/Technique/T0815
https://collaborate.mitre.org/attackics/index.php/Technique/T0813
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printing receipts, temperature monitors and building 
automation power meters run the vulnerable Nut/Net 
stack. Finally, these devices typically are connected to 
the enterprise network for, as two examples, remote 
maintenance or data transfers. In this scenario, we 
assume that the attacker compromises a temperature 
monitor that is connected to a Building Automation 
Controller in the Enterprise HQ. The compromise 
can happen by weaponizing the exploitation method 
discussed in the “Technical Dive In” (Section 4.4) 
with a payload such as a reverse shell, which would 
allow to gain a foothold into the target network. The 
caveat about CVE-2020-25111 is that it requires the 
attacker to be able to hijack DNS communications and 
reply to a legitimate request with a malicious packet. 
That hijacking can be done via a man-in-the-middle 
somewhere in the path between the request and the 
reply by exploiting a DNS server (either a local one 
in the target network or a more authoritative server) 
or by registering no-longer used domains in some 
cases. Another way for the attacker to gain initial 
access could be via an employee’s home office. The 
attacker can target a vulnerable consumer IoT device 
such as a home printer running the uIP stack with 
an RCE, such as the ICMP-based CVE-2020-25112. 
This highlights the trend of consumer IoT devices 
representing more and more a threat for the extended 
enterprise. A home printer may be connected to 
the HQ via VPN, which would allow an attacker to 
move from the employee’s home to the corporate HQ 
network. 

• Lateral Movement: Once the attacker has obtained 
an initial foothold in the enterprise network, they can 
access vulnerable devices such as office printers or 
building automation controllers in the Enterprise HQ. 
In this scenario, we assume that the attacker will move 
to the building automation controller (which also runs 
Nut/Net, so the same CVE can be used) and persist 

there to maintain their foothold. From that position, the 
attacker can now reach the devices in the sub-station.

• Impact, Disrupting the Sub-station: At the sub-station, 
the attacker has an ample choice of targets in the 
form of OT devices, such as RTUs running PicoTCP, 
protocol gateways running Nut/Net and industrial 
Ethernet switches running uIP. The attacker can first 
scan the network looking for the target. This can be 
done, for instance, by using active techniques such as 
the indirect information leak from mishandling TCP 
Urgent pointers that we discussed in the “Technical 
Dive In” about CVE-2020-17437 in Chapter 4. Since the 
goal is to disrupt network communications between 
the sub-station and the SCADA system, the attacker 
can directly DoS the RTU, which causes it to hang 
and reboot after a few seconds, thus interrupting 
the connection to the SCADA and the processing 
of input/output. Figure 21 shows the effect of 
exploiting CVE-2020-24337 on the device, as seen 
from a serial console connected to it. Notice that the 
device runs out of memory, dumps some internal 
information about the heap and resets. An interesting 
characteristic of this attack is that it relies on a single 
malicious TCP packet to bring down the device, which 
is very different from a DoS attack that relies on a 
rapid sequence of packets or a malicious command 
using an insecure OT protocol. This makes such 
an attack difficult to be detected out of the box by 
modern intrusion detection systems. Another possible 
attack is to DoS the industrial switch that connects the 
RTU to the network, thus disabling its communication 
in a different way, with the added impact of disabling 
the communication of other Ethernet-level devices. A 
third possibility is to DoS the protocol gateway, thus 
interrupting the processing of IOs read from serial 
devices, which may spread the effects of the attack to 
devices that are not even related to the RTU.

2 For a discussion and demonstration of persistence on a building automation controller (unrelated to AMNESIA:33) see https://www.forescout.com/
securing-building-automation-systems-bas/ 

https://pure.royalholloway.ac.uk/portal/services/downloadRegister/4550442/svidad.pdf
https://www.caida.org/publications/papers/2020/forgotten_side_dns/
https://attack.mitre.org/tactics/TA0003/
https://www.forescout.com/securing-building-automation-systems-bas/
https://www.forescout.com/securing-building-automation-systems-bas/
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Figure 21 – Exploiting CVE-2020-24337 DoS on the RTU

6.1. Other possible attack scenarios

Other types of impact that could affect the enterprise 
itself, not just the sub-station, have to do with DoSing 
some devices found along the way. 

For instance, we identified smoke alarms for smart 
homes and fire alarm control panels for smart buildings 
running the vulnerable stacks. These devices could 
be present either in the retail branch or the enterprise 
HQ and disabling the communications on these 
systems or taking them offline by using any of the DoS 
vulnerabilities could open the way to physical attacks 
that aim to damage physical systems and ultimately 
even public safety. 

We also identified some vulnerable switches that are 
typically used in small offices or retail branches. DoSing 
these switches with a single malicious packet could 
cut off communications within the branch or between 
a branch and the enterprise HQ. The impact of this 
on a retailer would be to cause massive delays and 

queues, which could be especially impactful during busy 
periods such as the holiday season. Similarly, a denial of 
service on the receipt printers also could cause delays in 
shopping. 

Vulnerable temperature monitors are an interesting 
target because they are present not only on retailers, as 
shown in Figure 21, but also are critical to maintain the 
temperature in scenarios as diverse as the food supply 
chain (including processing, transportation and storage), 
healthcare and research facilities that store material that 
spoils at room temperature or data centers that store 
customer information and can go offline in 15 minutes 
without appropriate cooling.

Exfiltrating enterprise data via compromised IoT devices 
is a scenario that is not attached to a single type of 
device since the device only needs to provide connectivity 
in this case, but has been shown in practice before using 
other types of vulnerabilities and could be replicated with 
an RCE from AMNESIA:33.

https://arxiv.org/pdf/1904.07110.pdf
https://arxiv.org/pdf/1904.07110.pdf
https://www.securityweek.com/cybersecurity-threats-food-supply-chain
https://www.securityweek.com/cybersecurity-threats-food-supply-chain
https://www.datacenterknowledge.com/archives/2008/02/08/how-much-time-once-the-cooling-fails
https://www.datacenterknowledge.com/archives/2008/02/08/how-much-time-once-the-cooling-fails
https://www.washingtonpost.com/gdpr-consent/?next_url=https%3a%2f%2fwww.washingtonpost.com%2fnews%2finnovations%2fwp%2f2017%2f07%2f21%2fhow-a-fish-tank-helped-hack-a-casino%2f
https://www.washingtonpost.com/gdpr-consent/?next_url=https%3a%2f%2fwww.washingtonpost.com%2fnews%2finnovations%2fwp%2f2017%2f07%2f21%2fhow-a-fish-tank-helped-hack-a-casino%2f
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7. Effective IoT risk mitigation
When vulnerabilities in critical components, such 
as a TCP/IP stack, affecting millions of devices are 
discovered, it is important to know both which assets on 
a network are potentially affected and what kind of risk 
they are exposed to in order to prioritize patching and 
hardening efforts. This kind of understanding requires 
a granular and context-aware visibility into network 
assets.

When it comes to much of the IoT, however, this visibility 
is obscured by complex supply chains that propagate 
vulnerabilities. Because of the absence of a Software Bill 
of Materials, it is often very hard to determine whether 
a vulnerable software is in a device. Conversely, when 
vulnerabilities get discovered, it is very time-consuming 
to contact all potentially affected vendors. As a result, 
vulnerabilities that have been fixed in products in one 
industry might resurface to affect products in another 
even a decade later or issues found in one product, such 
as those affecting the RTCS TCP/IP stack in the Smiths 
Medfusion 4000 infusion pump might not travel fully 
up and down the supply chain, again leaving millions 
of devices unpatched and their owners unaware of the 
risk. Other examples of vulnerabilities affecting stacks 
that are reported by a single product include Siemens 
devices using Nucleus NET and NicheStack. Examples of 
vulnerabilities affecting a product’s TCP/IP stack where 
the exact stack is not mentioned include Cisco IPSs 
(2013), Huawei switches (2015), Allen-Bradley safety 
devices (2017), Qualcomm modems (2018) and several 
Mitsubishi Electric devices (2020). All those issues may 
still be present in millions of devices.

These challenges highlight the need for a large-scale 
study such as Project Memoria: Looking at specific 
devices is not enough to reveal the true state of IoT 
security and how to mitigate existing risks. 

Merely being able to identify the operating system 
of a given asset, as many network visibility solutions 

do, is not enough to address this issue. Consider that 
most TCP/IP stacks are modular components rather 
than tightly coupled to an RTOS. In some cases, such 
as VxWorks and IPnet or FreeRTOS and FreeRTOS+TCP, 
there is a designated ‘default’ stack, but there is nothing 
preventing system integrators from swapping it out 
for another one (and indeed we have seen example of 
devices running FreeRTOS and lwIP or picoTCP). With a 
few exceptions, blindly assuming that a device running a 
particular RTOS will run a particular TCP/IP stack might 
lead to inefficient risk management. For example, while 
the URGENT/11 advisory reported correctly that the IPnet 
stack could historically be found with ENEA’s OSE, Green 
Hill’s INTEGRITY and Microsoft’s ThreadX, each of these 
use their own stacks since at least 2007 (respectively 
OSEnet, GHNet and NetX). Another example is Tesla’s 
Gateway ECU, which runs FreeRTOS but does so with 
LwIP. One example that we found during AMNESIA:33 
is a model in the MPL MAGBES family of industrial 
switches that runs components from three stacks: Most 
components are from the Nut/Net stack, but the SNMP 
and IGMP components come from other stacks (possibly 
cycloneTCP and the Ralink/Mediatek SDK based on a 
string analysis of the firmware).

Automated firmware analysis is also incapable of 
addressing this issue given the large number of 
embedded devices with closely guarded firmware, having 
encrypted or proprietary firmware formats and running 
exotic CPU architectures, while most automated analysis 
solutions tend to limit their support to Linux-based 
systems on ARM, MIPS or x86.

As such, IoT risk mitigation requires at the foundation 
a network-based granular, dynamic asset inventory 
capable of extracting information such as vendor, 
OS, firmware version and others via passive network 
fingerprints or active capabilities, while identifying 
TCP/IP stacks and their risk surface in a context-aware 
fashion in order to support enforcing mitigating controls 
and prioritized patch updates.

https://media.defcon.org/DEF%20CON%2025/DEF%20CON%2025%20presentations/DEF%20CON%2025%20-%20Jesse-Michael-and-Mickey-Shkatov-Driving-Down-the-Rabbit-Hole.pdf
https://us-cert.cisa.gov/ics/advisories/ICSMA-17-250-02A
https://us-cert.cisa.gov/ics/advisories/ICSMA-17-250-02A
https://cert-portal.siemens.com/productcert/pdf/ssa-434032.pdf
https://us-cert.cisa.gov/ics/advisories/icsa-20-105-08
https://nvd.nist.gov/vuln/detail/CVE-2013-1243
https://nvd.nist.gov/vuln/detail/CVE-2015-3913
https://nvd.nist.gov/vuln/detail/CVE-2017-9312
https://nvd.nist.gov/vuln/detail/CVE-2017-9312
https://nvd.nist.gov/vuln/detail/CVE-2018-5915
https://www.mitsubishielectric.com/en/psirt/vulnerability/pdf/2020-005_en.pdf
https://www.mitsubishielectric.com/en/psirt/vulnerability/pdf/2020-009_en.pdf
https://2016.zeronights.ru/wp-content/uploads/2016/12/Gateway_Internals_of_Tesla_Motors_v6.pdf
https://os.mbed.com/users/Sergunb/code/1/docs/tip/snmp__usm_8c_source.html
https://develop.nag.ru/public-source/Planeta/-/blob/3216709281e9d697c1a4ab2430f92242d46dca92/linux-3.4.x/drivers/net/wireless/ralink/rtpci/mt76x2/common/igmp_snoop.c
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One lesson we learned while trying to identify devices 
running vulnerable stacks is that passive fingerprinting 
(for instance, based on DHCP request fingerprinting) is 
rarely enough. We often must resort to active capabilities 
that make use of quirks in the implementations of TCP/IP 
stacks to confirm if a device is vulnerable. These quirks 
include how stacks reply to ICMP requests and how they 
handle the TCP Urgent pointer, as we discussed in the 
Technical Dive In about CVE-2020-17437 in Chapter 4. 

After identifying vulnerable devices, mitigations usually 
start with patching. But in the IoT/OT world, it is more 
and more common that patching is not an option 
because patches are not issued by vendors or cannot 
be applied to mission-critical systems. When this is 
the case, organizations should perform a thorough risk 
assessment of their networks to determine the required 
level of mitigation. The advantage of having a strong 
visibility foundation is that it gives network operators 
the confidence to isolate risky and critical devices that 
cannot be patched so that both their exposure to threats 
and the chance that they serve to propagate a threat or 
cause damage are minimized. 

Below we identify some possible mitigating actions 
that asset owners and security operators can take to 
protect their networks from the TCP/IP vulnerabilities in 
AMNESIA:33 and also in other stacks:

• Disable or block IPv6 traffic whenever it is not 
needed in the network since several vulnerabilities in 
AMNESIA:33 and TCP/IP stacks in general are related 
to IPv6 components. 

• Configure devices to rely on internal DNS servers as 
much as possible and closely monitor external DNS 
traffic since several vulnerabilities in AMNESIA:33 and 
TCP/IP stacks in general are related to DNS clients, 
which require a malicious DNS server to reply with 
malicious packets. 

• Monitor all network traffic for malformed packets (for 
instance, having non-conforming field lengths or failing 
checksums) that try to exploit known vulnerabilities 
or possible 0-days since many vulnerabilities are 
related to IPv4 and other standard components of 
stacks. Anomalous and malformed IP traffic should be 
blocked, or its presence should be at least alerted to 
network operators.

8. Conclusion
In this first report of Project Memoria, we reported on 
AMNESIA:33, a set of 33 new vulnerabilities affecting four 
open source TCP/IP stacks and analyzed these findings 
in the context of previous similar vulnerabilities. Our main 
conclusions from this first report are as follows:

• TCP/IP stacks are vulnerable across the board. 
Despite having some examples of resilient stacks, 
such as lwIP, cycloneTCP and uC/TCP-IP, the rule of 
thumb is that at close inspection, they yield a large 
number of bugs.

• Many of these vulnerabilities arise from well-known 
bad software development practices, such as an 
absence of basic input validation and shotgun parsing. 

• These patterns tend to generate bugs in all 
components, but their quantity and severity tend to 
correlate to increases in protocol complexity. Feature-
rich protocols like DNS are particularly affected.

• The impact and exploitability of these vulnerabilities 
are highly device-specific, presenting challenges to 
adequate risk management.

• These vulnerabilities affect hundreds of vendors and 
millions of devices used currently in any enterprise, but 
complex IoT/OT supply chains make it challenging to 
determine which devices are affected and which are 
not. For the same reasons, these vulnerabilities are 
very hard to eradicate.

http://dhcpfingerprinting.blogspot.com/
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Based on the insights gained from this first study, we 
plan on continuing investigating other stacks in detail 
and specific vulnerability-prone components of stacks 
at a large scale. Other activities under Project Memoria 
may include larger discussions on the current process of 
vulnerability disclosure as it is applied to the emerging 
IoT world and specific recommendations to actively 
defend networks and organizations.
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Download the white paper: Discover how Forescout 
helps you actively defend against AMNESIA:33, including 
six best practices to protect your organization.

View the webinar: Listen to our experts describing the 
highlights of the research.
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