
How TCP/IP Stacks Breed Critical Vulnerabilities
in IoT, OT and IT Devices

Published by Forescout Research Labs
Written by Daniel dos Santos, Stanislav Dashevskyi, Jos Wetzels and Amine Amri

 AMNESIA:33 | RESEARCH REPORT

Contents

1. Executive summary

2. About Project Memoria

3. AMNESIA:33 – a security analysis of open source TCP/IP stacks

 3.1. Why focus on open source TCP/IP stacks?

 3.2. Which open source stacks, exactly?

 3.3. 33 new findings

4. A comparison with similar studies

 4.1. Which components are typically flawed?

 4.2. What are the most common vulnerability types?

 4.3. Common anti-patterns

 4.4. What about exploitability?

 4.5. What is the actual danger?

5. Estimating the reach of AMNESIA:33

 5.1. Where you can see AMNESIA:33 – the modern supply chain

 5.2. The challenge – identifying and patching affected devices

 5.3. Facing the challenge – estimating numbers

 5.3.1. How many vendors

 5.3.2. What device types

 5.3.3. How many device units

6. An attack scenario

 6.1. Other possible attack scenarios

7. Effective IoT risk mitigation

8. Conclusion

RESEARCH REPORT | AMNESIA:33

FORESCOUT RESEARCH LABS

4

5

7

7

7

9

14

16

17

22

29

32

34

34

36

37

39

39

40

41

44

45

46

A note on vulnerability disclosure

We would like to thank the CERT Coordination Center, the ICS-CERT, the German Federal Office for Information Security
(BSI) and the JPCERT Coordination Center for their help in coordinating the disclosure of the AMNESIA:33 vulnerabilities.

We do not provide a list of affected or suspected-to-be-affected vendors in this report. We have shared this list with the
coordinating agencies, and we will rely on them, as well as the vendors, to provide their own advisories.

We do mention a few examples of vendors, including components and devices that embed the vulnerable stacks, in
Chapter 5. Those are mentioned because they help to illustrate important points.

RESEARCH REPORT | AMNESIA:33

FORESCOUT RESEARCH LABS

https://kb.cert.org/vuls/
https://us-cert.cisa.gov/ics
https://www.bsi.bund.de/EN/Topics/Industry_CI/ICS/contact/contact_node.html
https://www.bsi.bund.de/EN/Topics/Industry_CI/ICS/contact/contact_node.html
https://www.jpcert.or.jp/english/

FORESCOUT RESEARCH LABS 4

1. Executive summary
• Forescout Research Labs has launched Project

Memoria, an initiative that aims at providing the
community with the largest study on the security of
TCP/IP stacks. Project Memoria’s goal is to develop
the understanding of common bugs behind the
vulnerabilities in TCP/IP stacks, identifying the threats
they pose to the extended enterprise and how to
mitigate those.

• AMNESIA:33 is the first study we have published
under Project Memoria. In this study, we discuss
the results of the security analysis of seven open
source TCP/IP stacks and report a bundle of 33 new
vulnerabilities found in four of the seven analyzed
stacks that are used by major IoT, OT and IT device
vendors.

• Four of the vulnerabilities in AMNESIA:33 are critical,
with potential for remote code execution on certain
devices. Exploiting these vulnerabilities could allow
an attacker to take control of a device, thus using it
as an entry point on a network for internet-connected
devices, as a pivot point for lateral movement, as
a persistence point on the target network or as the
final target of an attack. For enterprise organizations,
this means they are at increased risk of having their
network compromised or having malicious actors
undermine their business continuity. For consumers,
this means that their IoT devices may be used as part
of large attack campaigns, such as botnets, without
them being aware.

• AMNESIA:33 affects multiple open source TCP/IP
stacks that are not owned by a single company. This
means that a single vulnerability tends to spread
easily and silently across multiple codebases,
development teams, companies and products, which
presents significant challenges to patch management.

• We estimate that more than 150 vendors and millions
of devices are vulnerable to AMNESIA:33. However, it

is difficult to assess the full impact of AMNESIA:33
because the vulnerable stacks are widely spread
(across different IoT, OT and IT devices in different
verticals), highly modular (with components, features
and settings being present in various combinations
and code bases often being forked) and incorporated
in undocumented, deeply embedded subsystems. For
the same reasons, these vulnerabilities tend to be very
hard to eradicate.

• The TCP/IP stacks affected by AMNESIA:33 can be
found in operating systems for embedded devices,
systems-on-a-chip, networking equipment, OT devices
and a myriad of enterprise and consumer IoT devices.

• TCP/IP stacks are critical components of all IP-
connected devices, including IoT and OT, since they
enable basic network communications. A security
flaw in a TCP/IP stack can be extremely dangerous
because the code in these components may be
used to process every incoming network packet
that reaches a device. This means that some
vulnerabilities in a TCP/IP stack allow for a device to
be exploited, even when it simply sits on a network
without running a specific application.

• Many of the vulnerabilities reported within
AMNESIA:33 arise from bad software development
practices, such as an absence of basic input
validation. They relate mostly to memory corruption
and can cause denial of service, information leaks or
remote code execution.

• Due to the complexity of identifying and patching
vulnerable devices, vulnerability management for TCP/
IP stacks is becoming a challenge for the security
community. We recommend adopting solutions that
provide granular device visibility, allow the monitoring
of network communications and isolate vulnerable
devices or network segments to manage the risk
posed by these vulnerabilities.

RESEARCH REPORT | AMNESIA:33 | Executive summary

https://www.forescout.com/forescout-research-labs/?&utm_medium=amnesia33-webpage&utm_source=amnesia33-research-report&utm_campaign=forescout-research-labs-webpage&utm_content=forescout-research-labs-webpage
https://www.forescout.com/amnesia33/?&utm_medium=amnesia33-webpage&utm_source=amnesia33-research-report&utm_campaign=amnesia33-webpage&utm_content=amnesia33-webpage
https://www.forescout.com/amnesia33/?&utm_medium=amnesia33-webpage&utm_source=amnesia33-research-report&utm_campaign=amnesia33-webpage&utm_content=amnesia33-webpage

FORESCOUT RESEARCH LABS 5

2. About Project Memoria

Forescout Research Labs worked in close collaboration
with JSOF to identify vendors and devices potentially
affected by the Ripple20 vulnerabilities, which affect the
Treck TCP/IP stack and many vendors that use it in their
IoT/OT products.

Ripple20 is the latest example of TCP/IP stack
vulnerabilities that expose a complex IoT supply chain,
thus affecting millions of devices across many industries.
While working on Ripple20, it became clear that the
problems with TCP/IP security flaws are not related
to a few vendor-specific stacks. On the contrary, we
hypothesized that the problem was much more generic
and widespread.

Forescout Research Labs has launched Project Memoria,
an initiative with the mission of providing the community
with the largest study on the security of TCP/IP stacks.
Under Project Memoria, Forescout Research Labs
collaborates with industry peers, as well as universities
and research institutes, to understand common mistakes

behind the vulnerabilities in TCP/IP stacks, identify the
threats they pose to the extended enterprise and how to
mitigate the risk.

This report focuses on AMNESIA:33, the first study we
published under Project Memoria, where we discuss the
results of the security analysis of seven open source
TCP/IP stacks. Other studies, focusing on different TCP/
IP stack components, will be ongoing.

With AMNESIA:33, we report on 33 new vulnerabilities
found in four of the seven stacks analyzed, namely
uIP, FNET, PicoTCP and Nut/Net. These stacks exist in
several variants, and they are used by several vendors
in different commercial products, both consumer
and enterprise grade, including critical devices in OT
environments.

The vulnerabilities included in AMNESIA:33 range in
potential impact from denial of service to remote code
execution and affect several components and features of
the stacks, such as IPv4 and v6, ICMP, TCP and DNS.

RESEARCH REPORT | AMNESIA:33 | About Project Memoria

The origins of Project Memoria

The word Memoria originates from Latin and, in many
Romance languages, means “memory.” Its use as a project
name refers to two facts. First, that many vulnerabilities in
TCP/IP stacks bring to memory vulnerabilities we used to
see in IT systems in the 1990s and early-2000s. Second,
that TCP/IP stacks are a somewhat forgotten foundation of
the IoT that we want to bring forward from memory.

INFORMATIONAL

The word Amnesia refers to the fact that most
vulnerabilities in TCP/IP stacks, particularly the ones in
AMNESIA:33, stem from memory corruption, which is
an attacker’s capability of reading or writing memory
locations that were not intended in the original behavior of
a target software. The different degrees of control over that
capability are what lead to different impacts such as denial
of service, information leaks and remote code execution.

https://www.jsof-tech.com/
https://www.forescout.com/company/blog/identifying-and-protecting-devices-vulnerable-to-ripple20/
https://www.forescout.com/company/blog/identifying-and-protecting-devices-vulnerable-to-ripple20/
https://github.com/adamdunkels/uip
http://fnet.sourceforge.net/
https://github.com/tass-belgium/picotcp
http://www.ethernut.de/

FORESCOUT RESEARCH LABS 6

RESEARCH REPORT | AMNESIA:33 | About Project Memoria

A look at the foundations:
the importance of TCP/IP stacks

Traditionally, embedded systems – such as a combination
of hardware and software designed for a specific function,
such as sensors or control mechanisms – relied on serial
networks for communication. With the rise of the Internet of
Things and the convergence of OT and IT, networks based
on the TCP/IP protocol suite have proliferated, and they
have often displaced old serial networks.

INFORMATIONAL

Nowadays, devices communicate with each other via a wide
array of protocols at different layers. The TCP/IP model in
Figure 1 shows how network communications happen in
layers and how each layer relies on the others. You can see
how application layer communications (such as HTTP) rely
on underlying internet layer (IP) and transport layer (TCP)
communications. The TCP/IP layers are of paramount
importance in modern network communication because
they are at the very foundation of every communication
happening via any of the protocols above.

TCP/IP functionality is implemented by means of a piece of
software called a protocol stack. Protocol stacks, whether
general purpose like SMB or domain specific like DNP3,
present an attractive target for malicious actors because
(a) they have direct network exposure; (b) they are often
implemented as low-level system functionality and, as
such, tend to be implemented in memory-unsafe languages
such as C and C++; (c) they are widely deployed; and (d)
they often offer a variety of unauthenticated functionality
exposing potential attack surface.

In addition, the code at the lower layers of protocol stacks
(like TCP/IP) is used to process every incoming frame and

packet that reaches a device, allowing for cases where
a system can be exploited even when it is not running a
specific application or listening on a particular port.

Finally, embedded systems, such as IoT and OT devices,
tend to have long vulnerability lifespans resulting from a
combination of patching issues, long support lifecycles and
vulnerabilities ‘trickling down’ highly complex and opaque
supply chains. As a result, vulnerabilities in embedded TCP/
IP stacks have the potential to affect millions – even billions
– of devices across verticals and tend to remain a problem
for a very long time.

HTTP, SSH, FTP

TCP, UDP

IPv4, IPv6, ICMP

ARP, Ethernet, WiFi

Application

Transport

Internet

Link

Application

Transport

Internet

Link

Figure 1 – The TCP/IP networking model

https://en.wikipedia.org/wiki/EternalBlue
https://en.wikipedia.org/wiki/SMBGhost_(security_vulnerability)
https://www.zerodayinitiative.com/advisories/ZDI-20-549/
https://en.wikipedia.org/wiki/Memory_safety
https://barrgroup.com/embedded-systems/market-surveys/2018-safety-security

FORESCOUT RESEARCH LABS 7

3. AMNESIA:33 – a security analysis
of open source TCP/IP stacks

3.1. Why focus on open source TCP/IP
stacks?

If “software is eating the world,” as Marc Andreessen
famously said, then we can say that open source
software is eating the embedded/IoT world. The
2019 Embedded Markets Study revealed that 88% of
embedded projects reused source code (either internally
developed code, third-party open source code or third-
party commercial code). This is not so surprising, since
development projects rarely start from scratch. What
is more interesting is that, out of these projects, 58%
used an open source RTOS (16% with and 42% without
commercial support), which typically includes an open
source embedded TCP/IP stack. Even more interesting,
a historical analysis in the same study shows that the
use of commercial OSes is declining since at least 2015,
while the use of open source is increasing. Sixty-three
percent of respondents in that study claimed that they
intend to use an open source OS in their next project.

One reason why open source components are so popular
is that 35% of developers consider the availability of full
source code to be the most important reason to choose
an OS. Regardless of the reasons, the same report
shows that only 4% of design time is spent on security
and privacy assessments.

There is a wealth of literature pointing at the risks posed
by third-party components on enterprise software,
including open source, such as the need to keep track of
vulnerabilities in these components, assess their impact
in a final product and decide whether or not to fix them,
assuming that a fix is provided by the third party. With
AMNESIA:33, we aim to show how widespread these
issues are among open source TCP/IP stacks.

3.2. Which open source stacks, exactly?

For our study, we selected a sample of seven open
source embedded TCP/IP stacks to analyze. Our choices
were based on (i) whether the stack is used or supported
by popular RTOSes (e.g., FreeRTOS and uC/OS are used
in respectively 18% and 7% of embedded projects); and
(ii) the popularity of embedded devices using the stack.

Table 1 lists the stacks that we ultimately selected for
our analysis. Note that (1) most of the stacks are close
to two decades old, which means that many versions of
their code exist, and many devices using the stacks are
probably end-of-life; and (2) we only provide examples
of notable OSes using the stacks, so the list is far from
being exhaustive.

RESEARCH REPORT | AMNESIA:33 | AMNESIA:33 – a security analysis of open source TCP/IP stacks

https://a16z.com/2011/08/20/why-software-is-eating-the-world/
https://www.embedded.com/2019-embedded-markets-study-reflects-emerging-technologies-continued-c-c-dominance/
https://www.embedded.com/2019-embedded-markets-study-reflects-emerging-technologies-continued-c-c-dominance/
https://ieeexplore.ieee.org/abstract/document/8316943
https://link.springer.com/article/10.1007/s10664-020-09830-x
https://link.springer.com/chapter/10.1007/978-3-319-30806-7_12
https://www.freertos.org/
https://www.micrium.com/rtos/
https://www.embedded.com/2019-embedded-markets-study-reflects-emerging-technologies-continued-c-c-dominance/

FORESCOUT RESEARCH LABS 8

RESEARCH REPORT | AMNESIA:33 | AMNESIA:33 – a security analysis of open source TCP/IP stacks

Stack Description License
Examples of
OSes using it

1 lwIP

lwIP (Lightweight IP) was developed in 2000 by Adam Dunkels
at the Swedish Institute of Computer Science and is now
maintained by a large group of developers. lwIP has become very
popular as part of FreeRTOS or as a standalone stack, now being
used by products such as Tesla gateway ECU and Philips Hue
smart lights.

BSD

LiteOS
RT-Thread
FreeRTOS
ReactOS

2 uIP

uIP (micro IP) was designed to be even lighter than lwIP
and was released in 2001 as an open source project also by
Adam Dunkels. It was extended by Cisco in 2008 with IPv6.
Its development has been halted as a standalone project, but
it continues as part of the Contiki OS, which in turn has a new
version called Contiki-NG. uIP is known to have been used in
devices as diverse as networking switches and picosatellites.

BSD

Contiki
Contiki-NG
RT-Thread
FreeRTOS

NuttX

3 Nut/Net

Nut/Net is the IP stack used by NutOS, which has been
developed by the Ethernut project since 2002. The stack is used
both by hobbyists and by commercial devices, including in OT/
ICS.

BSD NutOS

4 FNET
FNET was developed originally at Freescale in 2003 and made
public in 2009. It is currently maintained by Andrey Butok.

Apache v2 -

5 picoTCP

picoTCP was developed by Altran Intelligent Systems and made
open source in 2013. The stack continues to be developed as
picoTCP-NG, which is no longer supported by Altran. Online, there
is not much public mention of PicoTCP uses.

GPLv2 /
Commercial

seL4
TRENTOS

6 CycloneTCP

CycloneTCP is developed by Oryx Embedded and distributed
in source code form since 2013. Its website mentions uses in
Industrial IoT, energy metering and management, transportation
and smart buildings.

GPLv2 /
Commercial

-

7 uC/TCP-IP

uC/TCP-IP was developed originally by Micrium in 2002 and has
been open sourced in February 2020. uC/OS, which typically
relies on the stack, is known to be used in medical devices,
industrial control systems and other critical applications.

Apache v2
(previously

commercial)

uC/OS-II
uC/OS-III
Cesium

Table 1 – Analyzed stacks

https://savannah.nongnu.org/projects/lwip/
https://2016.zeronights.ru/wp-content/uploads/2016/12/Gateway_Internals_of_Tesla_Motors_v6.pdf
https://hackaday.com/2016/07/26/root-on-the-philips-hue-iot-bridge/
https://github.com/LiteOS/LiteOS/tree/master/components/net/lwip
https://github.com/RT-Thread/rt-thread/tree/master/components/net
https://github.com/FreeRTOS/FreeRTOS/tree/master/FreeRTOS/Demo/Common/ethernet
https://github.com/reactos/reactos/tree/3a98d96eac606d3fc258ef298b80a71f00d96188/sdk/lib/drivers/lwip
https://github.com/adamdunkels/uip
https://www.iab.org/wp-content/IAB-uploads/2011/04/Dunkels.pdf
https://github.com/contiki-os/contiki/tree/master/core/net/ip
https://github.com/contiki-ng/contiki-ng/tree/master/os/net/ipv6
https://github.com/RT-Thread/rt-thread/tree/master/components/net
https://github.com/FreeRTOS/FreeRTOS/tree/master/FreeRTOS/Demo/Common/ethernet
https://github.com/apache/incubator-nuttx/blob/master/include/nuttx/net/ip.h
https://sourceforge.net/projects/ethernut/
http://www.ethernut.de/en/community/appliances.html
https://www.proconx.com/products/xnut
https://www.proconx.com/products/xnut
http://www.ethernut.de/en/software/
https://sourceforge.net/projects/fnet/
https://github.com/tass-belgium/picotcp
https://docs.sel4.systems/projects/available-user-components.html
https://hensoldt-cyber.com/trentos/
https://www.oryx-embedded.com/products/CycloneTCP
https://www.oryx-embedded.com/about.html
https://github.com/SiliconLabs/uC-TCP-IP
https://www.micrium.com/about/customer-stories/
https://github.com/SiliconLabs/uC-OS2
https://github.com/SiliconLabs/uC-OS3
https://www.weston-embedded.com/products/cesium

FORESCOUT RESEARCH LABS 9

3.3. 33 new findings

To perform our analysis, we used a combination of
automated fuzzing (white-box code instrumentation
based on libFuzzer), manual analysis guided by variant
hunting using the Joern code querying engine and a
pre-existing corpus of vulnerabilities that we will describe
in Chapter 4 and manual code review. In this way, we

found a total of 33 new vulnerabilities spread across the
different stacks, as described in Table 2. In the Table,
we also differentiate between vulnerabilities found via
fuzzing (33%) and vulnerabilities found via static analysis
(67%). Although the targets are different, these numbers
are in line with the results reported by Google’s ‘Project
Zero’ at Black Hat USA 2019.

RESEARCH REPORT | AMNESIA:33 | AMNESIA:33 – a security analysis of open source TCP/IP stacks

Stack
Versions
Analyzed

of Total New
Vulnerabilities

of New
Vulnerabilities

Found Via Fuzzing

of New
Vulnerabilities Found

Via Code Analysis

uIP
uIP 1.0, Contiki 3.0,

Contiki-NG 4.5
13 6 7

picoTCP
picoTCP 1.7.0,

picoTCP-NG 2.0.0
10 5 5

FNET 4.6.3 5 0 5

Nut/Net 5.1 5 0 5

lwIP 2.1.2 0 0 0

CycloneTCP 1.9.6 0 0 0

uC/TCP-IP 3.06.00 0 0 0

Table 2 – AMNESIA:33 vulnerabilities across the analyzed stacks

In our study, we did not find any vulnerability in the lwIP,
CycloneTCP and uC/TCP-IP stacks. Although this does not
imply that there are no flaws in these stacks, we observed
that the three stacks have very consistent bounds checking
and generally do not rely on shotgun parsing, one of the
most common anti-patterns we identified.

We are not aware of any previous research done or
vulnerabilities found on CycloneTCP or uC/TCP-IP. lwIP has
a previously reported DNS cache poisoning (CVE-2014-

HIGHLIGHTS

4883) and has been analyzed before as part of FreeRTOS
and in terms of TCP conformance. We found two bugs in
the PPP component of lwIP, but they were reported to the
project and found unexploitable. As usual, these negative
results do not imply that there are no vulnerabilities in these
three stacks, but, from our analysis, they seem generally
more robust than the others in our dataset.

https://llvm.org/docs/LibFuzzer.html
https://joern.io/
https://i.blackhat.com/USA-19/Thursday/us-19-Hawkes-Project-Zero-Five-Years-Of-Make-0day-Hard.pdf
https://i.blackhat.com/USA-19/Thursday/us-19-Hawkes-Project-Zero-Five-Years-Of-Make-0day-Hard.pdf
https://nvd.nist.gov/vuln/detail/CVE-2014-4883
https://nvd.nist.gov/vuln/detail/CVE-2014-4883
https://speakerdeck.com/jsandin/shmoocon-2016-exploiting-memory-corruption-vulnerabilities-on-the-freertos-operating-system
https://shmoo.gitbook.io/2016-shmoocon-proceedings/bring_it_on/01_exploiting_memory_corruption
https://arxiv.org/abs/2002.05400

FORESCOUT RESEARCH LABS 10

The details of the new vulnerabilities are shown in Table
3 (uIP), Table 4 (picoTCP), Table 5 (FNET) and Table 6
(Nut/Net), and can be summarized as follows:

• AMNESIA:33 affects seven different components of
the stacks (DNS, IPv6, IPv4, TCP, ICMP, LLMNR and
mDNS). Two vulnerabilities in AMNESIA:33 only affect
6LoWPAN wireless devices.

• AMNESIA:33 has four categories of potential impact:
remote code execution (RCE), denial of service
(DoS via crash or infinite loop), information leak
(infoleak) and DNS cache poisoning. Generally, these
vulnerabilities can be exploited to take full control of
a target device (RCE), impair its functionality (DoS),
obtain potentially sensitive information (infoleak) or
inject malicious DNS records to point a device to an
attacker-controlled domain (DNS cache poisoning).

RESEARCH REPORT | AMNESIA:33 | AMNESIA:33 – a security analysis of open source TCP/IP stacks

CVE-
2020-

Description
Affected

Component
Potential
Impact

CVSSv3.1
Score

13984
The function used to process IPv6 extension headers
and extension header options can be put into an infinite
loop state due to unchecked header/option lengths.

Ext. header parsing
in IPv6 (6LoWPAN)

DoS 7.5

13985

The function used to decapsulate RPL extension
headers does not check for unsafe integer conversion
when parsing the values provided in a header, allowing
attackers to corrupt memory.

Ext. header parsing
in IPv6

DoS 7.5

13986

The function used to decapsulate RPL extension
headers does not check the length value of an RPL
extension header received, allowing attackers to put it
into an infinite loop.

Ext. header parsing
in IPv6 (6LoWPAN)

DoS 7.5

13987

The function that parses incoming transport layer
packets (TCP/UDP) does not check the length fields of
packet headers against the data available in the packets.
Given arbitrary lengths, an out-of-bounds memory read
may be performed during the checksum computation.

TCP/UDP checksum
calculation in IPv4

DoS
Infoleak

8.2

13988

The function that parses the TCP MSS option does
not check the validity of the length field of this option,
allowing attackers to put it into an infinite loop, when
arbitrary TCP MSS values are supplied.

TCP options parsing
in IPv4

DoS 7.5

17437

When handling TCP Urgent data, there are no sanity
checks for the value of the Urgent data pointer, allowing
attackers to corrupt memory by supplying arbitrary
Urgent data pointer offsets within TCP packets.

TCP packet
processing

DoS 8.2

Table 3 – Details of the new vulnerabilities on uIP Low: 0.1-3.9, Medium: 4.0-6.9 High: 7.0-8.9 Critical: 9.0-10.0

FORESCOUT RESEARCH LABS 11

RESEARCH REPORT | AMNESIA:33 | AMNESIA:33 – a security analysis of open source TCP/IP stacks

CVE-
2020-

Description
Affected

Component
Potential
Impact

CVSSv3.1
Score

17438

The code that reassembles fragmented packets does
not validate the total length of an incoming packet
specified in its IP header, as well as the fragmentation
offset value specified in the IP header. This may lead to
memory corruption.

Fragmented packet
reassembly in IPv4

DoS 7.0

17439

Incoming DNS replies are parsed by the DNS client even
if there were no outgoing queries. The DNS transaction
ID is not sufficiently random. Provided that the DNS
cache is quite small (4 entries), this facilitates DNS
cache poisoning attacks.

DNS response
processing

DNS cache
poisoning

8.1

17440

When parsing incoming DNS packets, there are no
checks whether domain names are null-terminated. This
allows attackers to achieve memory corruption with
crafted DNS responses.

DNS domain name
decoding

DoS 7.5

24334

The code that processes DNS responses does not check
whether the number of responses specified in the DNS
packet header correspond to the response data available
in the DNS packet, allowing attackers to corrupt
memory.

DNS response
processing

DoS 8.2

24335
The function that parses domain names lacks bounds
checks, allowing attackers to corrupt memory with
crafted DNS packets.

DNS domain name
decoding

DoS 7.5

24336

The code for parsing DNS records in DNS response
packets sent over NAT64 does not validate the length
field of the response records, allowing attackers to
corrupt memory.

DNS response
parsing in NAT64

RCE 9.8

25112

Several issues, such as insufficient checks for the IPv4/
IPv6 header length and inconsistent checks for the IPv6
header extension lengths, allow attackers to corrupt
memory.

ICMPv6 echo/reply
processing

RCE 8.1

FORESCOUT RESEARCH LABS 12

RESEARCH REPORT | AMNESIA:33 | AMNESIA:33 – a security analysis of open source TCP/IP stacks

Table 4 – Details of the new vulnerabilities on picoTCP

CVE-
2020-

Description
Affected

Component
Potential
Impact

CVSSv3.1
Score

17441
The payload length field of IPv6 extension headers is not
checked against the data available in incoming packets,
allowing attackers to corrupt memory.

Ext. header parsing
in IPv6, ICMPv6

checksum

DoS
Infoleak

7.5

17442

The function that processes the Hop-by-Hop extension
header in IPv6 packets and its options lacks any checks
against the length field of the header, allowing attackers
to put the function into an infinite loop by supplying
arbitrary length values.

Ext. header parsing
in IPv6

DoS 7.5

17443

When processing ICMPv6 echo requests, there are no
checks for whether the ICMPv6 header consists of at
least 8 bytes (set by RFC443). This leads to the function
that creates ICMPv6 echo replies based on a received
request with a smaller header to corrupt memory.

ICMPv6 echo
request processing

DoS 8.2

17444

The function that processes IPv6 headers does not
check the lengths of extension header options, allowing
attackers to put this function into an infinite loop with
crafted length values.

Ext. header parsing
in IPv6

DoS 7.5

17445

The function that processes the IPv6 Destination
Options extension header does not check the validity
of its options lengths, allowing attackers to corrupt
memory and/or put the function into an infinite loop with
crafted length values.

Ext. header parsing
in IPv6

DoS 7.5

24337

The function that processes TCP options does not
validate their lengths, allowing attackers to put
the function into an infinite loop with uncommon/
unsupported TCP options that have crafted length
values.

TCP options parsing
in IPv4

DoS 7.5

24338
The function that parses domain names lacks bounds
checks, allowing attackers to corrupt memory with
crafted DNS packets.

DNS domain name
decoding

RCE 9.8

24339
The function that parses domain names lacks bounds
checks, allowing attackers to corrupt memory with
crafted DNS packets.

DNS domain name
decoding

DoS 7.5

FORESCOUT RESEARCH LABS 13

RESEARCH REPORT | AMNESIA:33 | AMNESIA:33 – a security analysis of open source TCP/IP stacks

CVE-
2020-

Description
Affected

Component
Potential
Impact

CVSSv3.1
Score

17467
When parsing LLMNR requests, there are no checks
whether domain names are null-terminated. This may
allow attackers to read out of bounds.

LLMNR state
machine

Infoleak 8.2

17468
The function that processes the IPv6 Hop-by-Hop
extension header does not check the validity of its
options lengths, allowing attackers to corrupt memory.

Ext. header parsing
in IPv6

DoS 7.5

17469

The IPv6 packet reassembly function does not check
whether the received fragments are properly aligned
in memory, allowing attackers to perform memory
corruption with crafted IPv6 fragmented packets.

Fragmented packet
reassembly in IPv6

DoS 5.9

17470

The code that initializes the DNS client interface
structure does not set sufficiently random transaction
IDs (they will be always set to 1), facilitating DNS cache
poisoning attacks.

DNS response
processing

DNS cache
poisoning

4

24383

When parsing incoming mDNS packets, there are no
checks whether domain names are null-terminated. This
allows attackers to achieve memory corruption and/or
memory leak.

DNS domain name
decoding

DoS
Infoleak

6.5

Table 5 – Details of the new vulnerabilities on FNET

CVE-
2020-

Description
Affected

Component
Potential
Impact

CVSSv3.1
Score

24340

The code that processes DNS responses does not check
whether the number of responses specified in the DNS
packet header correspond to the response data available
in the DNS packet, allowing attackers to perform
memory corruption.

DNS response
processing

DoS
Infoleak

8.2

24341

The TCP input data processing function does not
validate the length of incoming TCP packets, allowing
attackers to read out of bounds and perform memory
corruption.

TCP packet
processing

DoS
Infoleak

8.2

FORESCOUT RESEARCH LABS 14

RESEARCH REPORT | AMNESIA:33 | A comparison with similar studies

CVE-
2020-

Description
Affected

Component
Potential
Impact

CVSSv3.1
Score

25107 The code that processes DNS questions/responses has
several issues: (1) there is no check on whether a domain
name is NULL-terminated; (2) the DNS response data length is
not checked (can be set to arbitrary value from a packet); (3)
the number of DNS queries/responses (set in DNS header) is
not checked against the data present; (4) the length byte of a
domain name in a DNS query/response is not checked and is
used for internal memory operations.

DNS domain name
decoding/ DNS

response processing

DoS 7.5

25108 DoS 7.5

25109 DoS 8.2

25110 DoS 8.2

25111 RCE 9.8

Table 6 – Details of the new vulnerabilities on Nut/Net

A note on bug collision

All the vulnerabilities described in this chapter were found
independently. However, CVE-2020-24338 was later found
to have been reported previously as CVE-2017-1000210,
which was fixed on PicoTCP-NG and had a pull request

INFORMATIONAL

on the original project fixing it that was never merged on
the master branch. Similarly, CVE-2020-17437 was later
found to have been fixed on Contiki-NG but not on previous
versions (uIP and Contiki) and never reported as a CVE.

4. A comparison with
similar studies

General-purpose TCP/IP stacks seem to have become
more robust since the days of WinNuke and the Ping
of Death affecting Linux, Mac and Windows systems,
despite occasional issues still occurring.

However, in the past few years, together with
AMNESIA:33, there has been a spate of vulnerabilities
in various embedded TCP/IP stacks as shown in Table
7. Throughout this chapter, we will use the sample of
vulnerabilities shown in the table to perform an analysis
of the general trend.

https://nvd.nist.gov/vuln/detail/CVE-2017-1000210
https://github.com/tass-belgium/picotcp/pull/473/commits/b5b3393c45bc9069b597237cc74a4a2934fed822
https://github.com/contiki-ng/contiki-ng/commit/a657bc6f41c05f9b1b086df9fde7c3241454fe75
https://en.wikipedia.org/wiki/WinNuke
https://en.wikipedia.org/wiki/Ping_of_death
https://en.wikipedia.org/wiki/Ping_of_death
https://github.com/Netflix/security-bulletins/blob/master/advisories/third-party/2019-001.md
https://docs.microsoft.com/en-us/security-updates/SecurityBulletins/2011/ms11-083?redirectedfrom=MSDN
https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2020-16898

FORESCOUT RESEARCH LABS 15

RESEARCH REPORT | AMNESIA:33 | A comparison with similar studies

Year of disclosure TCP/IP stack # Vulnerabilities disclosed

2013 Microchip TCP/IP 1

2014 uIP, lwIP 1

2017 RTCS TCP/IP 2

2017 picoTCP 1

2018 FreeRTOS+TCP 10

2019 Nucleus NET 1

2019 Interpeak IPnet 11 (URGENT/11)

2020 InterNiche NicheStack 1

2020 Treck TCP/IP 19 (Ripple20)

2020 uIP, PicoTCP, FNET, Nut/Net 33 (AMNESIA:33)

The first thing to notice from Table 7 is the significant
increase in numbers of vulnerabilities in recent advisories,
particularly for something as fundamental as a TCP/IP
stack. This indicates relative security immaturity, which
does not correlate with adoption, since IPnet and Treck,
for instance, are highly popular stacks that have been in
active use for decades. As we will show in Chapter 5, the
same is true for the stacks of AMNESIA:33.

To better understand and contextualize the AMNESIA:33
vulnerabilities using the dataset of Table 7, we analyze
those vulnerabilities from five angles:

• Affected components, i.e., which parts of stacks are
usually vulnerable. We find that the DNS, TCP and
IP sub-stacks are the most often vulnerable. DNS,
in particular, seems to be vulnerable because of its
complexity.

• Types of vulnerabilities, i.e., which vulnerabilities
are often found in these stacks. The most common
memory corruption vulnerabilities are out-of-bounds

reads and writes, followed by integer overflows. The
most common non-memory-related issue is state
confusion arising from request-reply matching.

• Anti-patterns, i.e., what code patterns are most
conducive to vulnerabilities. We find that common
anti-patterns include issues with calculating and/or
validating header and field lengths, properly parsing
various header option fields, ensuring that there is
enough data in the packet (in contrast to relying
on what is specified in the header), handling the
TCP Urgent pointer, fragmentation reassembly, IP
tunneling, verification of DNS domain name length and
null termination.

• Exploitability, i.e., if and how these vulnerabilities
can be exploited. In general, exploitability comes
down to how a stack is used in a particular device,
which can be broken down in three major categories:
stack configuration (such as which components are
used and how they are used), networking hardware

Table 7 – Vulnerabilities in embedded TCP/IP stacks over the years

https://www.securityfocus.com/bid/59603/info
https://www.kb.cert.org/vuls/id/210620
https://us-cert.cisa.gov/ics/advisories/ICSMA-17-250-02A
https://nvd.nist.gov/vuln/detail/CVE-2017-1000210
https://blog.zimperium.com/freertos-tcpip-stack-vulnerabilities-details/
https://us-cert.cisa.gov/ics/advisories/icsa-19-318-01
https://www.forescout.com/company/blog/solving-urgent11-identifying-vxworks-and-defending-ot-devices/
https://us-cert.cisa.gov/ics/advisories/icsa-20-105-08
https://www.forescout.com/company/blog/identifying-and-protecting-devices-vulnerable-to-ripple20/
https://www.windriver.com/
https://treck.com/

FORESCOUT RESEARCH LABS 16

and driver (such as what functions are offloaded to
dedicated hardware) and the target platform (such as
CPU architecture).

• Potential impact, i.e., what the impact can be of
exploiting these vulnerabilities. We discuss that
although most vulnerabilities in TCP/IP stacks are
denials of service (that might be seen as non-critical),
impact is highly contextual to a specific device and
use case (e.g., a DoS is very dangerous in mission-
critical devices).

4.1. Which components are
typically flawed?

A typical TCP/IP stack is composed of different parts
that handle different protocols, which we hereby call
components. In Figure 2, we can see that the most
affected components in our sample of vulnerabilities
are the DNS, TCP and IPv4/IPv6 sub-stacks, followed
by DHCP, ICMP/ICMPv6, ARP and others. The only
vulnerability that stands out is CVE-2020-11904 (part
of Ripple20), which was discovered within the memory
allocator component used by the Treck stack. Most of
the vulnerabilities in AMNESIA:33 impact the DNS, IPv6
and TCP components.

RESEARCH REPORT | AMNESIA:33 | A comparison with similar studies

Mem. allocator

NBNS

Ethernet

DHCPv6

IGMP

ARP

ICMPv6

ICMP

DHCP

IPv4

IPv6

TCP

DNS

0 5 10 15 20 25

Affected Components

Overall Percentage

AMNESIA:33 Ripple20 URGENT/11 Other

Figure 2 – Components of popular TCP/IP stacks affected by vulnerabilities

https://nvd.nist.gov/vuln/detail/CVE-2020-11904

FORESCOUT RESEARCH LABS 17

RESEARCH REPORT | AMNESIA:33 | A comparison with similar studies

1 For example, MITRE lists almost 900 weaknesses divided into more than 300 categories in its CWE framework.

Division by zero

Other (not memory-related)

NULL-ptr. deference

State confusion

OOB-W

Integer overflow

OOB-R

0 5 10 15 20 25 30 35 40 45

Vulnerability Types

Overall Percentage

AMNESIA:33 Ripple20 URGENT/11 Other

Figure 3 – Types of vulnerabilities found in popular TCP/IP stacks

Vulnerabilities in the IP and TCP substacks are
particularly interesting since they are independent of
applications running on top of them. Vulnerabilities in
the IP substack do not even require a TCP or UDP port
to be open for a device to be exploited. Some vulnerable
implementations also first attempt to fully parse
incoming TCP/UDP packets before checking for existing
connections, allowing them to be exploited even when
there are no open ports.

DNS appears to be a vulnerability-prone component
because it is a complex, feature-rich protocol, different
from many other components in the stack. Indeed, the
DNS component is a client that usually communicates
with a few standard servers rather than a server that
communicates with many other clients; this may lead
to errors in the implementations. A possible mitigation
of this complexity that we have seen is the OpenBSD

implementation, which relies on pledges to isolate
DNS processing and limit the effects of vulnerabilities.
However, as we will discuss below, this kind of mitigation
is rare in embedded devices.

4.2. What are the most common
vulnerability types?

Several taxonomies of vulnerability types exist in the
literature, which can be more or less granular.1 To
simplify our analysis, we use a categorization containing
the five most common memory-related vulnerability
types we observed, one common type that is not related
to memory (state confusion) and a category of “other”
less common issues that are not related to memory
corruption (such as race conditions and improper
random number generation).

https://cwe.mitre.org/
https://man.openbsd.org/pledge.2
https://cwe.mitre.org/about/sources.html

FORESCOUT RESEARCH LABS 18

Figure 3 shows a breakdown of the issues in our sample
by these vulnerability types, the most important being:

• Out-of-Bounds Read & Write (OOB-R and OOB-W):
TCP/IP and the various protocols built on top of
it have a variety of attacker-controlled length and
offset fields that influence memory manipulation
operations and, as such, require proper memory
bounds checking.

• Integer Overflow: The length and offset fields are
often incorporated in arithmetic operations during
assignments or comparisons. Given that integer
representations have a fixed size, it is important
to take the upper and lower bounds of that size
into account before applying those operations
because if a value grows larger than the maximum
or smaller than the minimum, it wraps around the
bound and ‘comes out the other side.’ Truncation
and signedness issues because of type casting also
play a role here. Often, an integer wraparound can
be used as leverage to cause an out-of-bounds read
or write. In some cases, integer overflows may lead
to infinite loops (e.g., when parsing TCP options or
IPv6 extension headers) in cases when the overflown
variable has impact on the exit condition of the loop.

• State Confusion: Stateful protocol handling requires
carefully keeping track of the current state and
session information of a given connection. Even
in stateless protocols, one must typically perform
request-reply matching to ensure that an incoming
reply is the response to a previously sent request.
Incorrectly implemented or overly permissive state
machines and ambiguous protocol specifications
can result in state confusion bugs, which in turn can
result in a misalignment between internally stored
data and expectations around subsequent incoming
data.

• Null Pointer Dereferences: A common case of illegal
or dangling pointer dereferences where an unmapped
or protected memory address is read from or written

to. Depending on target memory organization,
protection and fault handling this can result in Denial-
of-Service or, if the dangling pointer’s contents are
attacker-controllable, sometimes even Remote Code
Execution.

• Division by Zero: This happens when an arithmetic
operation has a divisor equal to zero, which is
undefined behavior and can result in an error or
exception.

A good example of request-reply matching issues
(state confusion) in AMNESIA:33 is CVE-2020-17439,
which affects uIP. The stack does not sufficiently
check whether incoming DNS reply packets match the
outgoing DNS queries. Attackers only need to wait until
there are any outgoing DNS queries from a vulnerable
device and send any DNS reply with a matching DNS
transaction ID. Since transaction IDs in this stack are
not properly randomized (can only be between 0x00
and 0x03), this reply will be accepted by the stack. It is
trivial for attackers to leverage this vulnerability to either
perform DNS cache poisoning attacks (thus injecting
malicious DNS records) or to exploit other vulnerabilities
that may be present within the DNS reply processing
functionality (e.g., see CVE-2020-17440 and CVE-2020-
24334 described below).

In the following “Technical Dive In,” we analyze at length
an example in AMNESIA:33 that showcases the integer
overflow and OOB-R/W types of vulnerabilities.

RESEARCH REPORT | AMNESIA:33 | A comparison with similar studies

FORESCOUT RESEARCH LABS 19

RESEARCH REPORT | AMNESIA:33 | A comparison with similar studies

Integer Underflow and OOB-R/W
in AMNESIA:33

An illustrative example of a combined integer overflow
and OOB-R/W issue is CVE-2020-17443 in PicoTCP. The

TECHNICAL DIVE IN

vulnerable code is located within the pico_icmp6_send_
echoreply() function that prepares ICMPv6 echo reply
packets to be sent in response to incoming ICMPv6 echo
requests (see Figure 4).

Figure 4 - CVE-2020-17443

Here, the memory for an ICMPv6 response header and
payload (reply) will be allocated based on the size of a
request header and payload echo->transport_len (line 68);
various fields of the reply packet will be set based on the
echo packet (lines 74-89), and the reply will be queued for
sending (line 90). In particular, the reply payload is being
copied directly from the echo payload using the memcpy()
function call (line 84). Here, the size of the memory copy is

the ICMPv6 length minus the minimum possible ICMPv6
header length of 8 bytes (defined in the PICO_ICMP6HDR_
ECHO_REQUEST_SIZE constant).

The code that accepts ICMPv6 echo request packets
(omitted for brevity) will process any packets that appear
to have an ICMPv6 header, even when it is shorter than 8
bytes. In fact, it only checks that the first byte after the IP

FORESCOUT RESEARCH LABS 20

RESEARCH REPORT | AMNESIA:33 | A comparison with similar studies

header is 0x80 (ICMPv6 echo request). The attackers have
explicit control over echo->transport_len, and if this value
is shorter than 8 bytes, the arithmetic operation in the third
argument of the memcpy() call (line 84) will underflow,
resulting in a large unsigned value. memcpy() will write out-
of-bounds of the reply->payload.

While RFC 1256 hints that the minimum size of the ICMP
message should be 8 bytes (for a router solicitation
message), it is not stated explicitly that packets with ICMP

TECHNICAL DIVE IN

payloads smaller than 8 bytes must be discarded when
processing ICMP echo request messages.

Sometimes, integer overflow bugs may not necessarily lead
to OOB-R/W vulnerabilities but exist side-by-side with them,
allowing attackers to achieve different goals. An illustrative
example from AMNESIA:33 is CVE-2020-17437, affecting
uIP (shown in Figure 5). This vulnerability stems from the
misuse of the Urgent pointer, yet it is different from the
vulnerabilities reported as part of URGENT/11.

Figure 5 – CVE-2020-17437 (the source)

The root cause of the issue resides in the uip_process()
function that handles incoming IPv4 packets. Figure 5
shows the code fragment that will be executed after a TCP
handshake when a client sends TCP data to the stack.
If the TCP Urgent flag is set (line 1642), and the stack is
configured to handle the Urgent data (UIP_URGDATA > 0),
the code fragment will get the Urgent offset from the packet

(uip_urglen) and prepare the stack for receiving out-of-band
data (lines 1644-1652).

However, by default, the stack is not configured to receive
out-of-band data (the UIP_URGDATA constant is set to 0).
Thus, upon receiving a TCP packet with the Urgent flag
set, lines 1656 and 1657 will be executed instead. Here,
the stack attempts to remove the out-of-band data from

https://tools.ietf.org/html/rfc1256

FORESCOUT RESEARCH LABS 21

RESEARCH REPORT | AMNESIA:33 | A comparison with similar studies

the packet by moving the global incoming application data
pointer (uip_appdata) past the Urgent data (line 1656)
and adjusting the length of the TCP data by subtracting
the Urgent data offset from the total TCP data length (line
1657). Here, it is crucial that uip_appdata points within a
global fixed-size statically allocated buffer uip_buf since this
buffer holds all incoming network packets.

TECHNICAL DIVE IN

Further, uip_len is passed into the function uip_add_
rcv_next() that sets the “ack” number of the TCP ACK
packet that the stack will send as a response. The global
application data pointer uip_appdata is used by the UIP_
APPCALL() callback (see Figure 6) for treating the incoming
application data. By design, re-implementing this callback
provides the ability to treat the application data in different
ways (e.g., FTP, HTTP webserver or any other custom
applications on top of the TCP protocol).

Figure 6 – CVE-2020-17437 (the sinks)

At this point, the attackers control three things: (1) the
global uip_appdata pointer, which will be set to point to the
first TCP data byte after the TCP header; (2) uip_len ¬– the
length of the TCP data received by the stack; and (3) the
Urgent data offset, which is taken directly from the TCP
header ((BUF->urgp[0] << 8) | BUF->urgp[1]).

As none of these values are properly validated, attackers
can craft TCP packets with arbitrary Urgent data offsets,
achieving several side effects: (1) the uip_appdata pointer
may be incremented by a large offset, pointing out-of-
bounds of the packet (and even out-of-bounds of uip_buf);
(2) uip_len is only two bytes wide; therefore, short packets
with Urgent offset larger than it will cause the value of uip_
len to overflow after the arithmetic operation at line 1657,
which can lead to a denial of service on a device running
this stack or have other consequences.

For example, if attackers send a packet with a small amount
of TCP data (e.g., a single byte) and slightly larger Urgent
data offset (e.g., 0x02), uip_len will overflow and become a
large 2-byte value (0xffff). At the same time, uip_appdata
will be advanced by the small Urgent offset (0x02), and
it will still point within the range of uip_buf. This has the
following side effect: The uip_add_rcv_nxt() function uses
the uip_len value to increment the “ack” field of the response
to be sent: The “ack” value of the incoming packet will be
added to the resulting uip_len (see Figure 7).

FORESCOUT RESEARCH LABS 22

RESEARCH REPORT | AMNESIA:33 | A comparison with similar studies

TECHNICAL DIVE IN

Figure 7 – CVE-2020-17437 (Indirect information leak)

This implementation quirk essentially allows attackers to
identify that this vulnerability exists without disrupting the
operation of the device (indirect information leak).

If, on the other hand, we set a large Urgent data offset
(e.g., 0xffff), the uip_appdata pointer will be pointing way
past uip_buf (most likely at an invalid address), causing

memory corruption wherever the uip_appdata pointer is
dereferenced. As noted above, the actual point at which
the invalid pointer is accessed (and other potential impact
vectors) depends on a specific implementation of the UIP_
APPCALL() callback.

4.3. Common anti-patterns

Anti-patterns, also known as negative patterns, describe
similar solutions to a common problem that may lead
to negative consequences. In our case, an anti-pattern
is a certain logic that is implemented in the same way in
different stacks, thus leading to similar vulnerabilities.

By analyzing our sample of vulnerabilities (including
AMNESIA:33), we understood that the most common
anti-patterns come down to three bad development
practices:

• A general absence of basic bounds checks and
integer overflow checks.

• A misinterpretation or mis-implementation of RFC
documents that define various protocols. Of course,
at the same time, several aspects of specific RFCs are
not strictly defined, leaving a large room for error (for
instance, see the “Technical Dive In” example of CVE-
2020-17443).

• A heavy reliance on ‘shotgun parsing,’ which is the
bad practice of mixing input validation and processing
in a manner that facilitates the processing of only
partially validated data.

From the analysis, it became clear that implementing
the same protocols under similar constraints tends
to produce similar bugs in similar places, providing
vulnerability researchers with what is essentially a corpus
of anti-patterns (i.e., similar known vulnerable pieces of
code) and prioritized components on which to focus their
efforts.

In AMNESIA:33 and the previous vulnerabilities,
what stands out in common are generic issues with
calculating and/or validating header and field lengths,
properly parsing various header option fields, ensuring
that there is enough data in the packet (in contrast
to relying on what is specified in the header) and
handling the notoriously vaguely specified TCP Urgent
pointer. This is followed by issues with fragmentation
reassembly, IP tunneling and request-reply matching.

http://langsec.org/papers/langsec-cwes-secdev2016.pdf

FORESCOUT RESEARCH LABS 23

RESEARCH REPORT | AMNESIA:33 | A comparison with similar studies

In relation to AMNESIA:33, we have noticed the following
anti-patterns not covered by previous research.

DNS domain name length. When processing domain name
entries, the parsing code must ensure that the value of
the length byte of a domain name label corresponds to
the number of bytes within the label. To spot a vulnerable
implementation, it is often enough to find a loop (or a
standalone function called within a loop) that processes
domain names and has the following behavior:

• It takes the first byte of the label as the length variable
and uses this length as the offset for advancing
an internal packet data pointer without performing
sufficient bounds checks.

• Additional checks should be carried out to ensure the
maximum length of the label cannot be more than 63
bytes (e.g., 0xff is not a valid length of a label), and the
maximum length of a domain name cannot be more
than 255 bytes (RFC 1035). Also, only alphanumeric
characters, digits and hyphens should be accepted as
valid characters within a domain name (RFC 1035).

DNS domain name NULL termination. Most of the
observations for the above anti-pattern apply here as well.
Additionally, the vulnerable code may use a function that
returns the length of a domain name within a DNS packet
and expects that it is explicitly NULL-terminated (e.g.,
strlen() as in the “Technical Dive In” example of CVE-2020-
25111). If this length is then used as an offset for memory
operations without proper bounds checks, the code is
most likely vulnerable.

IPv6 extension headers and options. Parsing of extension
headers or specific options of an extension header (or
all of them together) is typically done within a loop that
incorporates a “switch” conditional statement. We made the
following observations for vulnerable implementations:

HIGHLIGHTS

• Variables that store the length of a specific extension
header or the length of an individual option have either
direct or indirect impact on the exit condition of the loop.
These variables lack sufficient bounds checks to ensure
that the data being parsed is within the packet limits and
that the loop advances forward within the packet with
each iteration. Sometimes, these variables can be 8 or 16
bytes long so that integer overflows may occur.

• Some implementations may contain flaws that are not
relevant to memory corruption issues but can still have
similar consequences like a successful Denial-of-Service
attack. Therefore, it is worthwhile to spend more time
to analyze whether the exit condition of the parsing
loop can be abused (in a Technical Dive In we show the
example of CVE-2020-17445, which allows attackers
to either corrupt memory or achieve an infinite loop,
depending on the input).

Relevant RFCs must be followed as strictly as possible.
For example, the specific order of IPv6 extension headers
should be maintained, and some headers, such as Hop-by-
Hop extension, must not appear more than once within a
packet (RFC 2460).

https://tools.ietf.org/html/rfc1035
https://tools.ietf.org/html/rfc1035
https://tools.ietf.org/html/rfc2460

FORESCOUT RESEARCH LABS 24

RESEARCH REPORT | AMNESIA:33 | A comparison with similar studies

DNS domain name issues in AMNESIA:33

Figure 8 shows an example of how domain labels and
names can be encoded within a DNS packet: Domain names
may consist of one or multiple labels, where for each label
the first byte represents the length of the label in bytes and
the remaining bytes are alphanumeric characters of the
label itself (some special characters are allowed as well).
Labels can be chained into more complex domain names,
but the very last byte of the domain name must always

TECHNICAL DIVE IN

be the NULL (0x00) byte, explicitly indicating where the
domain name ends. For example, the domain name from
Figure 8 starts with the byte 0x06 that indicates the length
of the first label, followed by the bytes that correspond to
the first label (0x67 0x6f 0x6f 0x67 0x6c 0x65 == “google”),
continues with the length of the second label 0x03, the
bytes that correspond to the second label (0x63 0x6f 0x6d
== “com”) and ends with the NULL terminator byte (0x00).

Figure 8 – An example of DNS domain label/name

One illustrative example for vulnerable DNS domain name
parsing functions is related to CVE-2020-25111 that affects
Nut/Net (the ScanName() function on Figure 9). Initially, cp
is the pointer to the first byte of the domain name being
parsed (i.e., the length byte of the first label), and *npp is the
buffer into which the domain name is being copied while
parsing. The code will read the total domain name length
into the rc variable using the strlen() function (line 182)
and allocate the *npp buffer based on rc (line 183). It then

will start parsing individual labels (lines 185-189) by first
assigning the length of the first label to len and then copying
labels into *npp byte by byte.

FORESCOUT RESEARCH LABS 25

RESEARCH REPORT | AMNESIA:33 | A comparison with similar studies

TECHNICAL DIVE IN

Figure 9 – CVE-2020-25111

The ScanName() function lacks the necessary bounds
checks:

1. The strlen() function (line 182) will return the amount
of bytes in a sequence until the first NULL byte (0x00)
is encountered. In this case, by specifying arbitrary
sequences of bytes with the NULL byte placed at
specific offsets of the packet (and outside of it),
attackers can control the size of the heap-allocated
*npp (line 183).

2. The length of a label (len) is taken directly from the
packet and used as the “while” loop condition without
any proper bounds checks. By setting arbitrary values to
this length, attackers control the number of bytes written
into the *npp buffer (up to 255 bytes).

To exploit the vulnerability, attackers may set arbitrary
values to the label lengths (len), causing out-of-bounds
writes past the domain name buffer (*npp) and corrupting
the memory. By carefully choosing a sequence of
malformed domain name labels and placing NULL
terminator bytes, attackers may have the ability to perform
controlled OOB-W within the heap memory. This can lead to
a remote code execution, as discussed in the Technical Dive
In in Section 4.4.

Another category of issues related to processing DNS
replies, identified within the AMNESIA:33 research, is when
the number of response records specified in a DNS header
of the reply packet does not correspond to the actual
amount of response records available. A good example is
CVE-2020-24334 that affects uIP.

FORESCOUT RESEARCH LABS 26

RESEARCH REPORT | AMNESIA:33 | A comparison with similar studies

TECHNICAL DIVE IN

Figure 10 – An excerpt from a DNS response packet

Figure 10 shows an excerpt from a DNS response packet.
The DNS header consists of a sequence of bytes starting
with the transaction ID, flags, the number of questions, the
number of response records, the numbers of authority and
additional response records. After the DNS header, a packet

contains specific question record(s) (must be the exact
number of question records specified in the header) and
response record(s) (must me the exact number of response
records specified in the header).

FORESCOUT RESEARCH LABS 27

RESEARCH REPORT | AMNESIA:33 | A comparison with similar studies

TECHNICAL DIVE IN

Figure 11 – CVE-2020-24334

Figure 11 illustrates an excerpt from the vulnerable DNS
packet processing function related to CVE-2020-24334
(most of the code was omitted for brevity). Here, hdr
is the pointer to the DNS header of the incoming DNS
packet, taken from the global application data buffer uip_
appdata; the numbers of questions and response records
(nquestions and nanswers) are taken directly from the
header (lines 17 and 18); the queryptr pointer points at the
beginning of a resource record (initially it points at the first
question record); and the “while” loop (line 29) iterates over
the response records updating the queryptr so that it jumps
to the next response record on the next iteration of the loop.

The problem here is that attackers have explicit control
over the nanswers variable (it can be set directly in the
DNS header; see the example at Figure 10), as well as the
queryptr pointer. Therefore, if a packet with a large number
of response records (e.g., 0xff) set in the DNS header and
a smaller value of actual response records (e.g., < 0xff)
is being processed, queryptr will eventually point ouf of
the bounds of the packet (line 30), and OOB-R (potentially
a Denial-of-Service) within the function skip_name() will
happen.

FORESCOUT RESEARCH LABS 28

RESEARCH REPORT | AMNESIA:33 | A comparison with similar studies

IPv6 extension headers parsing in
AMNESIA:33

We sketch the IPv6 extension headers processing
vulnerabilities of AMNESIA:33 with one example: CVE-2020-
17445 affecting PicoTCP.

TECHNICAL DIVE IN

Figure 12 – CVE-2020-17445

Figure 12 shows the vulnerable function for processing
the IPv6 Destination Options extension header (CVE-2020-
17445). This function parses the options present in this
extension header one at a time. The option pointer points
at the current option being parsed; the len variable initially
contains the length of the extension header (and then is
used to track the number of bytes being parsed, being the
exit condition of the “while” loop); and the optlen variable
reads the length of the current option being parsed.

The main issues of CVE-2020-17445 are the following:

• Attackers can explicitly control optlen by setting arbitrary
length of an option within the Destination Options
extension header, and there are no sanity checks for the
value of this variable.

• Attackers can implicitly control len (line 27) that is used
within the exit condition of the “while” loop (line 8), and
there are no sanity checks for the value of this variable.

FORESCOUT RESEARCH LABS 29

RESEARCH REPORT | AMNESIA:33 | A comparison with similar studies

TECHNICAL DIVE IN

• Attackers can implicitly control the option pointer (line
26), and there are no bounds checks ensuring that this
pointer is pointing to the data within the packet being
processed.

Thus, by sending a carefully crafted packet, attackers can
achieve OOB-R (potentially a Denial-of-Service) by shifting
the option pointer into the unmapped memory. With this
degree of control, attackers may also cause a “silent”

Denial-of-Service: The “while” loop will never terminate, and
the stack will not process other incoming packets. The
optlen variable is an unsigned 8-bit integer; therefore, it
may overflow after the arithmetic operation at the line 9. If
attackers manage to cause an overflow such that optlen
becomes 0x00 at line 9 (i.e., by setting an option length to
0xfe), the values of option and len will not change at the
lines 26 and 27, and the loop will iterate indefinitely.

4.4. What about exploitability?

Whether a vulnerability in a protocol stack is exploitable
on any actual device depends on many factors, such as
configuration settings, target platform, the presence of
exploit mitigations and the freedom the attacker has in
shaping the target’s memory and state.

It is well-known that embedded systems – IoT and
OT devices – usually lack the hardware, software or
resources required to deploy modern exploit mitigations,
such as non-executable data memory (also known
as ESP, DEP, NX and W^X), address space layout
randomization (ASLR) and stack canaries for protection
against memory corruption exploitation.

The RTOSes that typically run on embedded systems
rarely offer appropriate memory segmentation and
privilege separation ‘out of the box.’ Thus, application,
networking and OS code often all run in the same flat
address space.

This combined lack of exploit mitigations and memory
protection in embedded systems tends to render
exploitation significantly easier than on modern IT
devices, such as servers or laptops, thus increasing the
risk posed by issues on these systems.

This also means that the impact of a vulnerability
will manifest differently on different devices. During

our study, we performed a thorough analysis of the
vulnerabilities described in Table 7 to understand their
exploitability and potential impact. We found that
exploitability is influenced heavily by the following
factors:

• Stack configuration: TCP/IP stacks are highly
configurable, allowing for enabling and disabling
various substacks, specifying buffer sizes, selecting
different kinds of memory allocators, regulating
interaction with network drivers and handling
debugging functionality. For example, we found some
bounds checks implemented as part of assertion
predicates, which are often turned off in production,
so the exploitability of some issues depends on the
assertion configuration.

• Networking Hardware & Driver: TCP/IP stacks
typically ‘talk’ to network interface abstraction code,
which in turn talks to a NIC (or MAC) driver to translate
between the specifics of a piece of networking
hardware and a generic API. TCP/IP stacks often can
be configured to offload packet validation and filtering,
and certain network controllers do so autonomously
regardless of stack configuration. Depending on the
nature of a vulnerability, this can influence whether a
malicious packet ever gets to reach the code it seeks
to exploit.

https://research.tue.nl/en/studentTheses/kintsugi
https://www.syssec.ruhr-uni-bochum.de/media/emma/veroeffentlichungen/2019/04/18/uArmor-EuroSP19.pdf
https://en.wikipedia.org/wiki/Executable_space_protection
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/Stack_buffer_overflow#Stack_canaries

FORESCOUT RESEARCH LABS 30

RESEARCH REPORT | AMNESIA:33 | A comparison with similar studies

• Target Platform: In some cases, exploitability of an
issue is highly dependent on the target’s hardware
architecture and configuration. For example, CVE-
2018-16524 affects the FreeRTOS+TCP stack by
allowing an attacker to provide an MSS value of 0 and
cause a division-by-zero, which can lead to a DoS.
However, the handling of division-by-zero depends on
the target platform, and in some flavors of ARM, the
division can return a value of 0 and not an exception,
thus rendering the vulnerability unexploitable.

It is crucial to keep in mind that a device that uses a
particular IP stack will not automatically be exploited.
Even when a vulnerability on a device can be exploited,
the impact of a vulnerability varies greatly.

TECHNICAL DIVE IN

Exploiting CVE-2020-25111

CVE-2020-25111 is a classic heap buffer overflow
occurring during the processing of the name field of a DNS
response resource record. An attacker can control the size
of the allocated buffer while writing an arbitrary number
of bytes to it, allowing the attacker to corrupt adjacent
memory, including metadata of other heap nodes. Nut/
OS (the OS that runs the Nut/Net stack) uses a single,
non-segregated, singly linked free-list in combination
with a deterministic, best fit, address ordered allocation
algorithm which performs forward coalescing. Heap guards
are optional and static. Heap nodes consist of a metadata
structure followed by the data itself, as follows:

struct _HEAPNODE {

 size_t hn_size; /* Size of this node. */

 HEAPNODE *hn_next; /* Link to next free

 node. */

};

HEAPNODE *heapFreeList;

To exploit CVE-2020-25111, an attacker can abuse the
fact that Nut/Net’s DNS component allocates and frees
resource record fields of sequential answers on the
heap and uses this for granular heap shaping. Consider
the following Nut/Net code, together with the function
ScanName that was shown in Figure 9:

static uint16_t ScanBinary(uint8_t * cp, uint8_t

** npp, uint16_t len) {

 if (*npp)

 free(*npp);

 *npp = malloc(len);

 memcpy(*npp, cp, len);

 return len;

}

static uint16_t DecodeDnsResource(DNSRESOURCE *

dor, uint8_t * buf) {

 uint16_t rc;

 rc = ScanName(buf, &dor->dor_name);

 rc += ScanShort(buf + rc, &dor->dor_type);

 rc += ScanShort(buf + rc, &dor->dor_class);

 rc += ScanLong(buf + rc, &dor->dor_ttl);

 rc += ScanShort(buf + rc, &dor->dor_len);

 rc += ScanBinary(buf + rc, &dor->dor_data,

 dor->dor_len);

 return rc;

}

...
for (n = 1; n <= (int) doh->doh_answers; n++) {

 dor = CreateDnsResource(dor);

 len += DecodeDnsResource(dor, pkt + len);

 if (dor->dor_type == 1)

 break;

}

https://nvd.nist.gov/vuln/detail/CVE-2018-16524
https://nvd.nist.gov/vuln/detail/CVE-2018-16524

FORESCOUT RESEARCH LABS 31

RESEARCH REPORT | AMNESIA:33 | A comparison with similar studies

TECHNICAL DIVE IN

Here, an attacker can send a DNS response with two
answers. The first answer’s resource record has a name
and data field with carefully chosen sizes to ensure
beneficial allocation and create a situation where the node
holding dor->dor_name directly precedes the node holding
dor->dor_data which in turn is followed directly by a free
node. Due to reasons that are out of scope for this report,
we require an allocated node in between our target-free
node and our overflown node when the overflow happens.

The second answer has a resource record with a malicious
name, causing an allocation of a size identical to the first
answer’s name size. Since that node was just freed, the
best-fit allocator will allocate this name at the exact same
position, right in front of the still allocated dor->dor_name
and subsequent free node. Then the overflow happens, and
we overwrite both the allocated node and the metadata of
the free node. When the code starts processing the data
field, it will deallocate the (now corrupted) previous node
and allocate a new one of a size we control. The allocator
will walk the free list until it encounters our corrupted node
whose hn_next field will redirect the allocator to a target
memory area of our choice. If the size_t value located there
matches the requested allocation size of our data, the
allocator will think it has found a best fit ‘node’ and ‘allocate’
the new dor->dor_data at an address of our choice.
Subsequently, the code will copy a number of bytes under
our control to that location.

We can abuse this controlled allocation to form a write
primitive that we can use to corrupt data or code of
interest and get RCE. In our case, we used it to overwrite
the local stackframe metadata (including the saved return
address) of NutDnsGetResource parent function so that
upon function return, we hijack control-flow. There are a
few limitations on how we have to craft our malicious DNS
reply, but the most significant one is that the size_t value

located at our target memory during controlled allocation
needs to be both known to us and present a reasonable
size. Luckily, NutDnsGetResource has a few local stack
variables that are suitable for this purpose, including raddr,
which will be set to the IP source address of our malicious
packet as a value we control and can set to anything we like.

Using the above materials, we can create an exploit that
redirects control-flow to a ROP chain that will ensure cache
coherency on architectures that require it (e.g., ARM, MIPS)
and finally shellcode of our choice. Exploitability of this
vulnerability is determined by a few factors:

1. Whether the DNS component is enabled and used

2. Target platform and architecture (e.g., memory
protection and organization, word sizes, etc.)

3. Baseline heap activity intensity

4. Heap allocator used

5. Exploit mitigations used (e.g., NX, ASLR, etc.)

Factor 3 can be mitigated by having more extensive heap
shaping activity using additional DNS answers. Factor 4
is most likely irrelevant in practice since Nut/OS seems to
heavily favor using its own allocator which we described
briefly above. Factor 5 is irrelevant in practice since Nut/OS
has no mitigation support. (It does not even have regular
memory protection support.)

FORESCOUT RESEARCH LABS 32

HIGHLIGHTS

RESEARCH REPORT | AMNESIA:33 | A comparison with similar studies

The impact of memory protection on
TCP/IP stack vulnerabilities

The common lack of support for memory protection or
segmentation in embedded devices means that some
OOB-R and OOB-W vulnerabilities might not cause a
crash immediately since there is no protected or (un)
mapped memory that would cause a fault handler to be
invoked. That does not mean that a crash cannot occur,
but it is more likely that this will be very unpredictable, for
example by corrupting some piece of memory that at a
later point in time gets used by the program in a way that
causes unexpected behavior or by reading from or writing
to memory mapped peripherals causing unexpected
interactions with other system components.

HIGHLIGHTS

A side note on fuzzing

Besides the impact on exploitability, the lack of memory
protection may help to explain why some of these
vulnerabilities have not been reported before. If someone
fuzzes a device in a black-box fashion over the network or
using an emulated image, then they are unlikely to trigger a
crash soon after a test case is sent, which makes it seem

4.5. What is the actual danger?

When publishing vulnerability advisories, researchers and
vendors try to define the impact type of a vulnerability,
namely the type of harm an attack could cause if the
vulnerability were exploited. Figure 13 gives a breakdown
of the vulnerabilities in our sample by these potential

like there is no issue, while in reality the corruption is now
latent in the device. Regular penetration tests, stress tests
and device standards compliance tests (e.g., IEC 62443-4)
are likely to take place in such a black-box fashion and
conclude there is no issue. Since we fuzzed the source-code
in a memory protected environment, this allowed us to
tightly couple test cases to crashes.

The absence of memory protection and segmentation, while
making devices more vulnerable, ironically also renders
some impacts less reliable. On the other hand, it does mean
that an exploited device will not shut down, hang or reboot
‘safely’ and in a controlled way through a fault handler.

This is another complicating factor in determining impact,
since on one device there might be memory protection
support while on another there might not be, adding a lot of
nuance.

impacts, but this requires some explanation. Figure 13
shows what we call the “immediate impact,” namely the
one assigned to a vulnerability based on a researcher’s
judgement.

https://www.iecee.org/dyn/www/f?p=106:49:0::::FSP_STD_ID:33615

FORESCOUT RESEARCH LABS 33

However, only relying on the immediate impact can
lead to missing the real potential of a vulnerability. For
instance, an out-of-bounds read that is associated by the
researchers to an information leak also could be turned
into a denial-of-service if the attacker attempts to read
from unmapped or protected memory to exploit it, hence
causing a segmentation fault. Similarly, a vulnerability
reported as a denial-of-service may be turned into
remote code execution under the right circumstances.

This means that the real impact is highly contextual. For
example, an information leak that discloses a few bytes
from memory might not have Heartbleed implications,
but it could very well become part of a larger exploit
chain with far more significant impact than the sum of
its parts.

Another factor to consider when discussing the real
impact of a vulnerability is what component it affects.
RCE in the IP stack is different from RCE in applications
(e.g., DNS or HTTP) since in the former case the target
does not need to be listening actively on any port for
the packet to be fully processed. As a result, RCEs on
IP stacks are far more dangerous since they have the
potential to breach firewalled and hardened hosts.

Finally, another key factor for which to account is what
type of device runs the vulnerable code. For example,
denial-of-service is often considered significantly less
important than remote code execution, but this is not
the case in critical OT environments where availability
is crucial. RCEs in critical embedded devices can be
used to commit fraud in a smart meter, breach corporate
networks via building automation and routers, VPNs,
firewalls or gateways, or attempt to cause physical
damage on a safety controller.

To disrupt or damage a critical operation, an attacker
could leverage a vulnerability in the TCP/IP stack of a
PLC controlling the opening and closing of a dam. For
the attack to be successful, the PLC needs to run the
vulnerable component of the stack in the right hardware
component. Indeed, in certain architectures, PLCs
integrate Ethernet communications on the same CPU
as the processor module, meaning that the attacker
can easily reach the processor via an RCE on the
Ethernet and take control of the device. However, in
more modular architectures, Ethernet communication
may be a separate module with its own CPU, making
it harder for the attacker to get complete control of the

RESEARCH REPORT | AMNESIA:33 | A comparison with similar studies

Figure 13 – Vulnerability impact categories within popular TCP/IP stacks

Other

RCE

Infoleak

DoS

0 10 20 30 40 50 60

Impact Across Vulnerabilities Bundles

Overall Percentage

AMNESIA:33 Ripple20 URGENT/11 Other

https://en.wikipedia.org/wiki/Heartbleed
https://krebsonsecurity.com/2014/02/target-hackers-broke-in-via-hvac-company/
https://www.us-cert.gov/ncas/alerts/aa20-010a,%20https:/blog.talosintelligence.com/2018/05/VPNFilter.html
https://www.us-cert.gov/ncas/alerts/aa20-010a,%20https:/blog.talosintelligence.com/2018/05/VPNFilter.html
https://us-cert.cisa.gov/sites/default/files/documents/MAR-17-352-01%20HatMan%20-%20Safety%20System%20Targeted%20Malware%20%28Update%20B%29.pdf
https://us-cert.cisa.gov/sites/default/files/documents/MAR-17-352-01%20HatMan%20-%20Safety%20System%20Targeted%20Malware%20%28Update%20B%29.pdf

FORESCOUT RESEARCH LABS 34

RESEARCH REPORT | AMNESIA:33 | Estimating the reach of AMNESIA:33

PLC by exploiting the RCE in the Ethernet module. Once
again, this shows how the real impact of a vulnerability
is heavily dependent on the context surrounding the
targeted device.

This is something asset owners and network operators
must keep in mind when assessing the impact a
vulnerability can have in their environment. The real
impact can be indeed very different from the assigned
CVSS score, for good or for bad. In this regard, a help for
asset owners comes from the Environmental Metrics
of CVSS, which allow one to customize a vulnerability’s
score based on the importance of an asset in the
organization.

5. Estimating the reach of
AMNESIA:33

5.1. Where you can see AMNESIA:33 –
the modern supply chain

Figure 14 shows a few examples of components and
devices that we identified running the vulnerable stacks.
The AMNESIA:33 vulnerabilities can be found in products
that range from embedded components (such as
Systems on a Chip – SoCs, connectivity modules and
OEM boards) to consumer IoT (such as smart plugs
and smart thermostats), and from networking and
office equipment (such as printers, switches and server
software) to OT (such as access control devices, IP
Cameras, RTUs and HVAC).

Figure 14 – Examples of components and devices running the vulnerable stacks

Network & Office
Examples: Printers, Routers, Servers

Consumer IoT
Examples: Smart Plugs, Smart Phones,

Sensors, Game Consoles

OT
Examples: Access Controls, IP Cameras,

Protocol Gateways, HVACs

Embedded Components
Examples: Systems-on-a-Chip (SoCs), Connectivity

Modules, OEM Boards

https://www.first.org/cvss/specification-document#Environmental-Metrics

FORESCOUT RESEARCH LABS 35

RESEARCH REPORT | AMNESIA:33 | Estimating the reach of AMNESIA:33

To understand the real reach of AMNESIA:33, we
first need to understand how embedded devices are
composed. Typically, IoT, OT and even IT devices found in
enterprise and home networks are built up from several
hardware and software components, including:

• Microcontroller Units (MCUs), which are very small
computers in single microchips.

• Dedicated modules, which are hardware components
that provide specific functions, such as Wi-Fi or USB
connectivity.

• Systems-on-a-Chip (SoCs), which are
microprocessors with a number of integrated
peripherals on the same chip.

• Original Equipment Manufacturer (OEM) boards,
which provide ready-to-go system boards to be used
in the product of another manufacturer.

These components come from a device vendor’s supply
chain (i.e., they are produced by other software and
hardware component vendors, and they are “mixed and

matched” based on different design constraints (such as
specific lightweight TCP/IP stacks needed for low-energy
or low-memory consumption in wireless sensors). Each
of these components runs embedded software that may
include a TCP/IP stack.

It is seldom the case that the end user of a device has
complete knowledge of all the hardware and software
components that are present on it – known as a Bill of
Materials, or BOM. On the contrary, it is often a surprise
to see how many and which components eventually
enter in the final product. For example, Figure 15 shows
the components of a Broadlink Smart Plug. The plug
contains the MediaTek MT7681 a popular Wi-Fi module
that leverages the vulnerable stack uIP. There are several
SoCs that are based on the MT7681, such as the To-
Link TMA1507A, the HiLink HLK-M30 and HLK-M35, the
Scinan SNIOT505, the Ogemray GWF-KM22 and the
Broadlink WT1SBS, WT1SBSL and WT1FBS. If we look at
devices using Broadlink SoCs, we have examples such as
the SP mini and MP1 smart plugs.

Figure 15 – Supply chain example, the Broadlink Smart Plug

Vulnerable TCP/IP
Stack (uIP)

MT7681 Module WT1SBS SoC Broadlink Smart Plug

In our study, we found that several Wi-Fi modules rely on uIP, probably due to its very small memory footprint.

HIGHLIGHTS

https://labs.mediatek.com/zh-cn/download/L6HE1sbD
http://www.trolink.cn/UploadFiles/Product/20160422162251_30068.pdf
http://www.trolink.cn/UploadFiles/Product/20160422162251_30068.pdf
https://www.cnx-software.com/2014/10/31/hi-link-hlk-m30-startkit-based-on-mediatek-mt7681-wisoc-sells-for-10/
https://fccid.io/2AD56HLK-M35/Letter/Cover-Letter-for-Request-Modular-Approval-2532373
https://fccid.io/2AFO5-SNIOT505/Letter/Modular-Approval-Request-2736017.pdf
https://fccid.io/YWTWF7681KMX/User-Manual/User-manual-2421044.pdf
https://fccid.io/2ACDZ-WT1/User-Manual/User-Manual-2672275.pdf
https://fccid.io/2ACDZ-3301SBSL/User-Manual/User-manual-1-3253081.pdf
https://fccid.io/2ACDZ-WT1FBS/User-Manual/Users-Manual-2772742.pdf

FORESCOUT RESEARCH LABS 36

RESEARCH REPORT | AMNESIA:33 | Estimating the reach of AMNESIA:33

Another example, highlighting the security problems
arising with long supply chains, is illustrated in Figure
16, which is anonymized because of the criticality of the
assets involved. We found Vendor A of UPS devices that
relies on another Vendor B for its network management
cards. Vendor B, in turn, integrates an embedded RTOS
from Vendor C on these network managements cards.
Finally, the embedded RTOS includes a vulnerable

TCP/IP stack from Vendor D. The problem arises when
Vendor C goes out of business (as it actually happened)
and the RTOS for the network management card is no
longer supported. This means that even if the uIP stack
is patched, this patch will not become part of the RTOS
distribution or the network management card, leaving the
UPS un-patchable.

Figure 16 – Supply chain example, security issues on a UPS

Vulnerable TCP/IP Stack
(Vendor D)

Operating System
(Vendor C)

Network Management Card
(Vendor B)

UPS
(Vendor A)

5.2. The challenge – identifying and
patching affected devices

Ripple20 and URGENT/11 taught the community that at
the time of disclosure, it is difficult to understand the real
reach of vulnerabilities affecting TCP/IP stacks.

For example, Schneider Electric has released a security
bulletin in response to URGENT/11 confirming that
over 60 device series have been found affected, and
this bulletin still gets regular updates even almost a
year after the original disclosure of URGENT/11. Cisco
in its original response to Ripple20 listed some of its
devices as vulnerable but recognized that there were
still devices under investigation. Some vendors might
remain unaware whether their products are affected for
a long time after the original vulnerability disclosure.
For instance, the vulnerable version of the IPNet stack
is quite old (released circa 2006-2007), and it since has
been integrated into many products of many vendors.

Yet, after almost a year since URGENT/11 and a few
months since Ripple20, both sets of vulnerabilities

are thought to affect hundreds of millions of devices,
including categories of devices that clearly underline
the criticality of embedded TCP/IP stacks. When we
investigated Forescout’s Device Cloud, we saw more than
32,000 instances of IPNet (on VxWorks) in July, 2019
and more than 90,000 instances of Treck in June, 2020
using signatures such as OS classification, application
banners and DHCP request fingerprinting. These product
categories include industrial controllers from ABB,
Siemens, Schneider Electric, Rockwell Automation and
others; healthcare systems from Philips, GE, Baxter and
others; networking equipment from Cisco, SonicWall and
others; as well as enterprise devices such as printers and
VoIP phones from HP, Alcatel-Lucent and others.

AMNESIA:33 affects multiple stacks that are not owned
by a single company but maintained as open source
projects. After their code is published on a collaborative
repository, such as GitHub or SourceForge, new forks and
the appearance of a variety of versions of the code are
almost inevitable.

https://www.se.com/ww/en/download/document/SESB-2019-214-01/
https://www.se.com/ww/en/download/document/SESB-2019-214-01/
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-treck-ip-stack-JyBQ5GyC
https://www.forescout.com/company/blog/solving-urgent11-identifying-vxworks-and-defending-ot-devices/
https://www.forescout.com/company/blog/identifying-and-protecting-devices-vulnerable-to-ripple20/

FORESCOUT RESEARCH LABS 37

RESEARCH REPORT | AMNESIA:33 | Estimating the reach of AMNESIA:33

The risk is that these vulnerabilities can spread easily
and silently across multiple codebases, development
teams, companies and products since these stacks form
the basis of other software, operating systems, SoCs,
embedded modules and development boards used to
create a multitude of devices. This can happen because
of the integration of faulty code in a project or because
a new project starts as a fork of a vulnerable one. Below,
we describe some of these situations that we observed
with AMNESIA:33.

• uIP started as a standalone project, which then
became part of the Contiki OS. Contiki became a
popular operating system for the Internet of Things,
and then was branched into Contiki-NG. Contiki also
forms the basis of the Thingsquare IoT platform,
which is used by companies such as ABB and
Electrolux. Some of these versions of uIP, such as
Contiki-NG and Thingsquare, are still maintained and
some are not, such as the original uIP 1.0, but they are
all still available for download and use.

• The NuttX RTOS started by importing uIP, but then
evolved its code independently. We could verify that at
least one vulnerability still applies to NuttX. Similarly,
parts of NuttX code can be found on Samsung’s
TizenRT RTOS and the micro-ROS robotics OS.

• The open-iscsi project, which provides an
implementation of the iSCSI protocol used by Linux
distributions, such as Red Hat, Fedora, SUSE and
Debian, also imports part of the uIP code. Again, we
were able to detect that some CVEs apply to it.

• The u-boot_mod project is a modification of UBoot
1.1.4 for routers that includes, among other things,
a web server based on uIP 0.9. This was based on
D-Link firmware that also includes a webserver based
on uIP 0.9. We saw at least the D-Link DIR 505 router
running it.

• The mDNS component of the nanostack used by the
ARM mbed OS is a copy of FNET’s mDNS component,

so CVE-2020-24383 applies to this new stack. We also
found that Zephyr RTOS’ stack derives part of its TCP
handling code from FNET, but in this case, we did not
detect any vulnerability spreading.

Open source code should make it easier to fix
vulnerabilities. Ideally, when a new vulnerability is
disclosed, any member of the project could prepare
a security patch. However, during this research, we
discovered that because of the many forks, branches and
unsupported yet-available versions, it is difficult to get
these patches applied everywhere.

We contacted the ICS-CERT and the CERT Coordination
Center to help in the disclosure, patching and vendor
communication for the AMNESIA:33 vulnerabilities. They
in turn got the help of GitHub’s security team to find and
contact affected repositories. Despite much effort from
all the parties, official patches were only issued by the
Contiki-NG, PicoTCP-NG, FNET and Nut/Net projects. At
the time of writing, no official patches have been issued
for the original uIP, Contiki and PicoTCP projects, which
we believe have reached end-of-life status but are still
available for download. Some of the vendors and projects
using these original stacks, such as open-iscsi, issued
their own patches.

5.3. Facing the challenge – estimating
numbers

Identifying affected devices is even harder for open
source stacks because their code can be reused easily
and adapted across many projects. This deliberate
fragmentation makes it much more challenging to
account for the presence of a vulnerable component in a
device.

To have an initial idea of the types, vendors and number
of devices impacted by these new vulnerabilities, we
looked at three data sources:

https://www.thingsquare.com/
https://github.com/JelmerT/thingsquare-mist
https://www.thingsquare.com/#cases
https://github.com/Samsung/TizenRT/blob/master/external/dhcpc/dhcpc.c
https://github.com/micro-ROS/
https://www.open-iscsi.com/
https://github.com/pepe2k/u-boot_mod
https://github.com/pepe2k/u-boot_mod/tree/master/u-boot/httpd
https://github.com/ARMmbed/mbed-os/tree/mbed-os-5.6/features/nanostack
https://github.com/zephyrproject-rtos/zephyr/blob/master/subsys/net/ip/tcp.c
https://github.com/zephyrproject-rtos/zephyr/blob/master/subsys/net/ip/tcp.c
https://us-cert.cisa.gov/ics
https://www.kb.cert.org/vuls/
https://www.kb.cert.org/vuls/
https://github.com/security/team

FORESCOUT RESEARCH LABS 38

RESEARCH REPORT | AMNESIA:33 | Estimating the reach of AMNESIA:33

1. Open source intelligence: We looked at product
documentation, datasheets and licensing information
that often mention open source components used
by a device. For instance, the datasheet for some ICS
controllers in the Siemens SIRIUS line mentions uIP.
As another example, Netgear makes available the GPL
code they use in their products. By looking at those,
we could identify that some switch models run the
Contiki OS.

2. Online devices: We queried Shodan, Censys and Fofa
for devices having banners that indicate the use of the
stacks (e.g., “Server: uIP/1.0” or “Server: uIP/0.9” for
uIP). Interestingly, Fofa has predefined tags for some
of the OSes or IP stacks, including app=”Thingsquare-
Contiki” for Contiki, app=”FNET-HTTP-Freescale-
Embedded-Web-Server” for FNET and app=”Ethernut-
Project” for Nut/Net. Figure 17 shows the result of a
search for “Contiki” on Shodan.

Figure 17 – Query for “Contiki” on Shodan

3. Forescout Device Cloud: Device Cloud is a closed
repository of information coming from devices
monitored by Forescout appliances. We queried it
for information such as OS classification, application
banners and DHCP request fingerprinting, similar to
what was done for Ripple20.

Although we put a lot of effort into identifying reliable
sources of information, all three sources mentioned
above might occasionally lead to false positives. For
instance, datasheets and product licenses may mention
a component that is not used by a specific device (e.g.,
FreeRTOS ships with uIP and lwIP code, but either one,

the other or a third stack is used, while the license may
mention both), and online devices may have an HTTP
server of one stack and then use another stack for other
protocols.

The main issue, however, lies with false negatives: We
may not have enough information to identify the use of a
stack on a device. For instance, in case the usage is not
mentioned in the documentation, the device doesn’t have
an application-layer banner, and it is not present on a
Forescout customer. Therefore, we expect the numbers
below to underestimate the actual numbers of vendors
and devices.

https://cache.industry.siemens.com/dl/files/835/109755835/att_994003/v1/A5E35631562001A_RS-AD_004_201908071023052370.pdf
https://new.siemens.com/global/en/products/automation/industrial-controls/sirius.html
https://kb.netgear.com/2649/NETGEAR-Open-Source-Code-for-Programmers-GPL
https://kb.netgear.com/2649/NETGEAR-Open-Source-Code-for-Programmers-GPL
https://www.shodan.io/
https://censys.io/
https://fofa.so/
https://www.forescout.com/company/blog/identifying-and-protecting-devices-vulnerable-to-ripple20/

FORESCOUT RESEARCH LABS 39

RESEARCH REPORT | AMNESIA:33 | Estimating the reach of AMNESIA:33

After analyzing the data from the three sources
aforementioned, we compiled a list of more than
150 unique potentially affected vendors and device
models. We also estimated the number of device units
vulnerable in the wild in the order of millions.

Below, we present some details of this analysis. We do
not mention here vulnerable vendors or devices by name
because investigations are still ongoing, but we present
statistics about vendors, device types and device units.

5.3.1. How many vendors

Table 8 shows the number of vendors we identified using
each stack. Notice that the “total unique” is not the sum
of the rows for each stack because some vendors use
more than one stack, and we only count them once.
Vendors are divided in two: “component vendors” are
those that sell RTOS, IoT stacks, MCUs, SoCs and other
components used to create end consumer or enterprise
devices, and “device vendors” are those that sell end
devices directly to consumers or companies.

Table 8 – Vendors identified

Stack Total vendors Component vendors Device vendors

uIP 125 26 99

Nut/Net 24 1 23

picoTCP 10 8 2

FNET 5 2 3

Total unique 158 36 122

5.3.2. What device types

Figure 18 shows a division, in macro categories, of the
potentially vulnerable device models identified from the
three data sources. The largest category is IoT, both
enterprise and consumer, which includes devices such
as cameras, environmental sensors (e.g., temperature,
humidity), smart lights, smart plugs, barcode readers,
specialized printers, audio systems for retail and a few
healthcare devices. IoT is followed by OT equipment for
Building Automation Systems, which includes devices
such as physical access control, fire and smoke alarms,
energy meters, batteries and HVAC systems. Then we
have OT equipment for Industrial Control Systems, which

includes devices such as PLCs, RTUs, protocol gateways
and serial-to-ethernet gateways. Following is IT, which
includes devices such as printers, switches and wireless
access points.

FORESCOUT RESEARCH LABS 40

RESEARCH REPORT | AMNESIA:33 | Estimating the reach of AMNESIA:33

5.3.3. How many device units

Estimating the number of existing individual vulnerable
device units is the most difficult task because some
devices, such as PLCs, RTUs and other OT equipment,
are known to be very popular but are rarely found online
since they are not supposed to be internet-connected.
Besides, device components are not always advertised
in documentation or in network traffic, although popular
SoCs are shipped by manufacturers in the order of
millions per quarter.

Figure 18 – Device type distribution

Nevertheless, we found around 11,000 online instances
of potentially vulnerable devices and more than 35,000
instances on Device Cloud. Drilling down into the
Device Cloud data, Figure 19 shows a distribution of the
potentially vulnerable devices per industry vertical where
they are deployed. The Figure shows that government,
healthcare, services and manufacturing are the verticals
with the highest number of potentially vulnerable
devices.

Figure 19 – Potentially vulnerable devices per industry vertical

IT
IoT
OT/BAS
OT/ICS

19% 16%

46%

19%

% of Device per Typology

% of Vulnerable Devices per Business Vertical

26%

17%

12%
11%

19%

6%
5% 4% Government

Healthcare
Services
Manufacturing
Other
Financial
Retail
Technology

FORESCOUT RESEARCH LABS 41

RESEARCH REPORT | AMNESIA:33 | An attack scenario

Table 9 – Estimation of vulnerable devices, a breakdown

Stack Device Type Device Units (~) Source

uIP

IoT – Wi-Fi SoCs 10M Market Analysis

IT – Switches 5M Market Analysis

OT/BAS – Fire Control Panels 45k Case Study

Nut/Net OT/BAS – Temperature Sensors 13K Case Study

picoTCP
OT/BAS – HVAC 100k Case Study

OT/ICS – RTUs 200k Case Study

6. An attack scenario
Figure 20 shows a simplified, though realistic, network
configuration for a typical enterprise, and it will be used
to discuss how AMNESIA:33 could be exploited by a
malicious actor to damage the enterprise.

In our example, the enterprise has four locations: a retail
branch, a home office, an enterprise HQ and a sub-
station. To facilitate our discussion, we will ignore the
presence of internal network segmentation. However,
to better reflect the reality, we assume that while the
retail branch, the home office and the enterprise HQ are
internet-connected, the sub-station is isolated and can
only be accessed from within the Enterprise HQ network.

Note that all the device types in Figure 20 have at least
one instance that is vulnerable to AMNESIA:33. Namely,
we found at least one device model that runs one of the
vulnerable stacks.

We also extended this analysis by looking at marketing
material about some specific device models, including
case studies from vendors and market analysis from
independent firms. Table 9 shows a breakdown of these
data sources and the number of devices running the
vulnerable stacks that we identified. Note that no public

information related to the number of units running the
FNET stack has been found at the time of writing.

As with the previous numbers, the figures below are an
underestimation because the marketing material was
only available for a very limited number of devices.

FORESCOUT RESEARCH LABS 42

RESEARCH REPORT | AMNESIA:33 | An attack scenario

Figure 20 – How AMNESIA:33 threatens the Enterprise of Things

In this Figure, we highlight a possible attack scenario
where the main goal for the attacker is to disrupt the
functioning of the sub-station, which can lead to a major
blackout. (Think of the 2015 attack on the Ukrainian grid.)

To accomplish their goal, the attacker can obtain initial
access from the retail branch or from an employee’s
home office (points 1 in the figure), can move laterally
to the enterprise HQ (point 2 in the figure), and from
there they can finally reach the sub-station (point 3 in
the figure) where they can cause the intended impact: a
denial of view and control that prevents operators from
monitoring and controlling the physical processes.

Protocol
gateway

Industrial
ethernet switch

RTUSmart
plug

Home
printer

Smartphone Laptop

Retail Branch

Power meter Receipt
printer

Temperature
sensor

WAN Enterprise HQ

Building
automation
controller

File serverOffice printer

Home Office

External DNS
server1B

Sub-Station

3

21 3Initial Access Lateral Movement Impact

1A

2A

2B

Below, we provide the details on how an attacker can
execute the steps above by exploiting some of the
vulnerabilities in AMNESIA:33.

• Initial Access: To obtain initial access from the
retail branch, we assume the attacker manages
to exploit one of the RCEs in AMNESIA:33, namely
CVE-2020-25111. In the Technical Dive in Section
4.4, we discussed a proof of concept we run in
our labs that shows how the vulnerability could
be exploited. This vulnerability represents a good
candidate for an attacker because it affects DNS,
which is externally accessible and can usually traverse
network boundaries, and because we have seen that
several devices, including retail printers used for

https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
https://attack.mitre.org/tactics/TA0001/
https://attack.mitre.org/tactics/TA0001/
https://attack.mitre.org/tactics/TA0008/
https://collaborate.mitre.org/attackics/index.php/Impact
https://collaborate.mitre.org/attackics/index.php/Technique/T0815
https://collaborate.mitre.org/attackics/index.php/Technique/T0813

FORESCOUT RESEARCH LABS 43

RESEARCH REPORT | AMNESIA:33 | An attack scenario

printing receipts, temperature monitors and building
automation power meters run the vulnerable Nut/Net
stack. Finally, these devices typically are connected to
the enterprise network for, as two examples, remote
maintenance or data transfers. In this scenario, we
assume that the attacker compromises a temperature
monitor that is connected to a Building Automation
Controller in the Enterprise HQ. The compromise
can happen by weaponizing the exploitation method
discussed in the “Technical Dive In” (Section 4.4)
with a payload such as a reverse shell, which would
allow to gain a foothold into the target network. The
caveat about CVE-2020-25111 is that it requires the
attacker to be able to hijack DNS communications and
reply to a legitimate request with a malicious packet.
That hijacking can be done via a man-in-the-middle
somewhere in the path between the request and the
reply by exploiting a DNS server (either a local one
in the target network or a more authoritative server)
or by registering no-longer used domains in some
cases. Another way for the attacker to gain initial
access could be via an employee’s home office. The
attacker can target a vulnerable consumer IoT device
such as a home printer running the uIP stack with
an RCE, such as the ICMP-based CVE-2020-25112.
This highlights the trend of consumer IoT devices
representing more and more a threat for the extended
enterprise. A home printer may be connected to
the HQ via VPN, which would allow an attacker to
move from the employee’s home to the corporate HQ
network.

• Lateral Movement: Once the attacker has obtained
an initial foothold in the enterprise network, they can
access vulnerable devices such as office printers or
building automation controllers in the Enterprise HQ.
In this scenario, we assume that the attacker will move
to the building automation controller (which also runs
Nut/Net, so the same CVE can be used) and persist

there to maintain their foothold. From that position, the
attacker can now reach the devices in the sub-station.

• Impact, Disrupting the Sub-station: At the sub-station,
the attacker has an ample choice of targets in the
form of OT devices, such as RTUs running PicoTCP,
protocol gateways running Nut/Net and industrial
Ethernet switches running uIP. The attacker can first
scan the network looking for the target. This can be
done, for instance, by using active techniques such as
the indirect information leak from mishandling TCP
Urgent pointers that we discussed in the “Technical
Dive In” about CVE-2020-17437 in Chapter 4. Since the
goal is to disrupt network communications between
the sub-station and the SCADA system, the attacker
can directly DoS the RTU, which causes it to hang
and reboot after a few seconds, thus interrupting
the connection to the SCADA and the processing
of input/output. Figure 21 shows the effect of
exploiting CVE-2020-24337 on the device, as seen
from a serial console connected to it. Notice that the
device runs out of memory, dumps some internal
information about the heap and resets. An interesting
characteristic of this attack is that it relies on a single
malicious TCP packet to bring down the device, which
is very different from a DoS attack that relies on a
rapid sequence of packets or a malicious command
using an insecure OT protocol. This makes such
an attack difficult to be detected out of the box by
modern intrusion detection systems. Another possible
attack is to DoS the industrial switch that connects the
RTU to the network, thus disabling its communication
in a different way, with the added impact of disabling
the communication of other Ethernet-level devices. A
third possibility is to DoS the protocol gateway, thus
interrupting the processing of IOs read from serial
devices, which may spread the effects of the attack to
devices that are not even related to the RTU.

2 For a discussion and demonstration of persistence on a building automation controller (unrelated to AMNESIA:33) see https://www.forescout.com/
securing-building-automation-systems-bas/

https://pure.royalholloway.ac.uk/portal/services/downloadRegister/4550442/svidad.pdf
https://www.caida.org/publications/papers/2020/forgotten_side_dns/
https://attack.mitre.org/tactics/TA0003/
https://www.forescout.com/securing-building-automation-systems-bas/
https://www.forescout.com/securing-building-automation-systems-bas/

FORESCOUT RESEARCH LABS 44

RESEARCH REPORT | AMNESIA:33 | An attack scenario

Figure 21 – Exploiting CVE-2020-24337 DoS on the RTU

6.1. Other possible attack scenarios

Other types of impact that could affect the enterprise
itself, not just the sub-station, have to do with DoSing
some devices found along the way.

For instance, we identified smoke alarms for smart
homes and fire alarm control panels for smart buildings
running the vulnerable stacks. These devices could
be present either in the retail branch or the enterprise
HQ and disabling the communications on these
systems or taking them offline by using any of the DoS
vulnerabilities could open the way to physical attacks
that aim to damage physical systems and ultimately
even public safety.

We also identified some vulnerable switches that are
typically used in small offices or retail branches. DoSing
these switches with a single malicious packet could
cut off communications within the branch or between
a branch and the enterprise HQ. The impact of this
on a retailer would be to cause massive delays and

queues, which could be especially impactful during busy
periods such as the holiday season. Similarly, a denial of
service on the receipt printers also could cause delays in
shopping.

Vulnerable temperature monitors are an interesting
target because they are present not only on retailers, as
shown in Figure 21, but also are critical to maintain the
temperature in scenarios as diverse as the food supply
chain (including processing, transportation and storage),
healthcare and research facilities that store material that
spoils at room temperature or data centers that store
customer information and can go offline in 15 minutes
without appropriate cooling.

Exfiltrating enterprise data via compromised IoT devices
is a scenario that is not attached to a single type of
device since the device only needs to provide connectivity
in this case, but has been shown in practice before using
other types of vulnerabilities and could be replicated with
an RCE from AMNESIA:33.

https://arxiv.org/pdf/1904.07110.pdf
https://arxiv.org/pdf/1904.07110.pdf
https://www.securityweek.com/cybersecurity-threats-food-supply-chain
https://www.securityweek.com/cybersecurity-threats-food-supply-chain
https://www.datacenterknowledge.com/archives/2008/02/08/how-much-time-once-the-cooling-fails
https://www.datacenterknowledge.com/archives/2008/02/08/how-much-time-once-the-cooling-fails
https://www.washingtonpost.com/gdpr-consent/?next_url=https%3a%2f%2fwww.washingtonpost.com%2fnews%2finnovations%2fwp%2f2017%2f07%2f21%2fhow-a-fish-tank-helped-hack-a-casino%2f
https://www.washingtonpost.com/gdpr-consent/?next_url=https%3a%2f%2fwww.washingtonpost.com%2fnews%2finnovations%2fwp%2f2017%2f07%2f21%2fhow-a-fish-tank-helped-hack-a-casino%2f

FORESCOUT RESEARCH LABS 45

RESEARCH REPORT | AMNESIA:33 | Effective IoT risk mitigation

7. Effective IoT risk mitigation
When vulnerabilities in critical components, such
as a TCP/IP stack, affecting millions of devices are
discovered, it is important to know both which assets on
a network are potentially affected and what kind of risk
they are exposed to in order to prioritize patching and
hardening efforts. This kind of understanding requires
a granular and context-aware visibility into network
assets.

When it comes to much of the IoT, however, this visibility
is obscured by complex supply chains that propagate
vulnerabilities. Because of the absence of a Software Bill
of Materials, it is often very hard to determine whether
a vulnerable software is in a device. Conversely, when
vulnerabilities get discovered, it is very time-consuming
to contact all potentially affected vendors. As a result,
vulnerabilities that have been fixed in products in one
industry might resurface to affect products in another
even a decade later or issues found in one product, such
as those affecting the RTCS TCP/IP stack in the Smiths
Medfusion 4000 infusion pump might not travel fully
up and down the supply chain, again leaving millions
of devices unpatched and their owners unaware of the
risk. Other examples of vulnerabilities affecting stacks
that are reported by a single product include Siemens
devices using Nucleus NET and NicheStack. Examples of
vulnerabilities affecting a product’s TCP/IP stack where
the exact stack is not mentioned include Cisco IPSs
(2013), Huawei switches (2015), Allen-Bradley safety
devices (2017), Qualcomm modems (2018) and several
Mitsubishi Electric devices (2020). All those issues may
still be present in millions of devices.

These challenges highlight the need for a large-scale
study such as Project Memoria: Looking at specific
devices is not enough to reveal the true state of IoT
security and how to mitigate existing risks.

Merely being able to identify the operating system
of a given asset, as many network visibility solutions

do, is not enough to address this issue. Consider that
most TCP/IP stacks are modular components rather
than tightly coupled to an RTOS. In some cases, such
as VxWorks and IPnet or FreeRTOS and FreeRTOS+TCP,
there is a designated ‘default’ stack, but there is nothing
preventing system integrators from swapping it out
for another one (and indeed we have seen example of
devices running FreeRTOS and lwIP or picoTCP). With a
few exceptions, blindly assuming that a device running a
particular RTOS will run a particular TCP/IP stack might
lead to inefficient risk management. For example, while
the URGENT/11 advisory reported correctly that the IPnet
stack could historically be found with ENEA’s OSE, Green
Hill’s INTEGRITY and Microsoft’s ThreadX, each of these
use their own stacks since at least 2007 (respectively
OSEnet, GHNet and NetX). Another example is Tesla’s
Gateway ECU, which runs FreeRTOS but does so with
LwIP. One example that we found during AMNESIA:33
is a model in the MPL MAGBES family of industrial
switches that runs components from three stacks: Most
components are from the Nut/Net stack, but the SNMP
and IGMP components come from other stacks (possibly
cycloneTCP and the Ralink/Mediatek SDK based on a
string analysis of the firmware).

Automated firmware analysis is also incapable of
addressing this issue given the large number of
embedded devices with closely guarded firmware, having
encrypted or proprietary firmware formats and running
exotic CPU architectures, while most automated analysis
solutions tend to limit their support to Linux-based
systems on ARM, MIPS or x86.

As such, IoT risk mitigation requires at the foundation
a network-based granular, dynamic asset inventory
capable of extracting information such as vendor,
OS, firmware version and others via passive network
fingerprints or active capabilities, while identifying
TCP/IP stacks and their risk surface in a context-aware
fashion in order to support enforcing mitigating controls
and prioritized patch updates.

https://media.defcon.org/DEF%20CON%2025/DEF%20CON%2025%20presentations/DEF%20CON%2025%20-%20Jesse-Michael-and-Mickey-Shkatov-Driving-Down-the-Rabbit-Hole.pdf
https://us-cert.cisa.gov/ics/advisories/ICSMA-17-250-02A
https://us-cert.cisa.gov/ics/advisories/ICSMA-17-250-02A
https://cert-portal.siemens.com/productcert/pdf/ssa-434032.pdf
https://us-cert.cisa.gov/ics/advisories/icsa-20-105-08
https://nvd.nist.gov/vuln/detail/CVE-2013-1243
https://nvd.nist.gov/vuln/detail/CVE-2015-3913
https://nvd.nist.gov/vuln/detail/CVE-2017-9312
https://nvd.nist.gov/vuln/detail/CVE-2017-9312
https://nvd.nist.gov/vuln/detail/CVE-2018-5915
https://www.mitsubishielectric.com/en/psirt/vulnerability/pdf/2020-005_en.pdf
https://www.mitsubishielectric.com/en/psirt/vulnerability/pdf/2020-009_en.pdf
https://2016.zeronights.ru/wp-content/uploads/2016/12/Gateway_Internals_of_Tesla_Motors_v6.pdf
https://os.mbed.com/users/Sergunb/code/1/docs/tip/snmp__usm_8c_source.html
https://develop.nag.ru/public-source/Planeta/-/blob/3216709281e9d697c1a4ab2430f92242d46dca92/linux-3.4.x/drivers/net/wireless/ralink/rtpci/mt76x2/common/igmp_snoop.c

FORESCOUT RESEARCH LABS 46

RESEARCH REPORT | AMNESIA:33 | Conclusion

One lesson we learned while trying to identify devices
running vulnerable stacks is that passive fingerprinting
(for instance, based on DHCP request fingerprinting) is
rarely enough. We often must resort to active capabilities
that make use of quirks in the implementations of TCP/IP
stacks to confirm if a device is vulnerable. These quirks
include how stacks reply to ICMP requests and how they
handle the TCP Urgent pointer, as we discussed in the
Technical Dive In about CVE-2020-17437 in Chapter 4.

After identifying vulnerable devices, mitigations usually
start with patching. But in the IoT/OT world, it is more
and more common that patching is not an option
because patches are not issued by vendors or cannot
be applied to mission-critical systems. When this is
the case, organizations should perform a thorough risk
assessment of their networks to determine the required
level of mitigation. The advantage of having a strong
visibility foundation is that it gives network operators
the confidence to isolate risky and critical devices that
cannot be patched so that both their exposure to threats
and the chance that they serve to propagate a threat or
cause damage are minimized.

Below we identify some possible mitigating actions
that asset owners and security operators can take to
protect their networks from the TCP/IP vulnerabilities in
AMNESIA:33 and also in other stacks:

• Disable or block IPv6 traffic whenever it is not
needed in the network since several vulnerabilities in
AMNESIA:33 and TCP/IP stacks in general are related
to IPv6 components.

• Configure devices to rely on internal DNS servers as
much as possible and closely monitor external DNS
traffic since several vulnerabilities in AMNESIA:33 and
TCP/IP stacks in general are related to DNS clients,
which require a malicious DNS server to reply with
malicious packets.

• Monitor all network traffic for malformed packets (for
instance, having non-conforming field lengths or failing
checksums) that try to exploit known vulnerabilities
or possible 0-days since many vulnerabilities are
related to IPv4 and other standard components of
stacks. Anomalous and malformed IP traffic should be
blocked, or its presence should be at least alerted to
network operators.

8. Conclusion
In this first report of Project Memoria, we reported on
AMNESIA:33, a set of 33 new vulnerabilities affecting four
open source TCP/IP stacks and analyzed these findings
in the context of previous similar vulnerabilities. Our main
conclusions from this first report are as follows:

• TCP/IP stacks are vulnerable across the board.
Despite having some examples of resilient stacks,
such as lwIP, cycloneTCP and uC/TCP-IP, the rule of
thumb is that at close inspection, they yield a large
number of bugs.

• Many of these vulnerabilities arise from well-known
bad software development practices, such as an
absence of basic input validation and shotgun parsing.

• These patterns tend to generate bugs in all
components, but their quantity and severity tend to
correlate to increases in protocol complexity. Feature-
rich protocols like DNS are particularly affected.

• The impact and exploitability of these vulnerabilities
are highly device-specific, presenting challenges to
adequate risk management.

• These vulnerabilities affect hundreds of vendors and
millions of devices used currently in any enterprise, but
complex IoT/OT supply chains make it challenging to
determine which devices are affected and which are
not. For the same reasons, these vulnerabilities are
very hard to eradicate.

http://dhcpfingerprinting.blogspot.com/

© 2020 Forescout Technologies, Inc. All rights reserved. Forescout Technologies, Inc. is a Delaware
corporation. A list of our trademarks and patents can be found at https://www.forescout.com/
company/legal/intellectual-property-patents-trademarks. Other brands, products or service names
may be trademarks or service marks of their respective owners. Version 12_20

Forescout Technologies, Inc.
190 W Tasman Dr.
San Jose, CA 95134 USA

Toll-Free (U.S.) 1-866-377-8771
Tel (Intl) +1-408-213-3191
Support +1-708-237-6591

Learn more at Forescout.com

forescout.com/amnesia33/ research@forescout.com toll free 1-866-377-8771

Don’t just see it.
Secure it.
Contact us today to actively
defend your Enterprise of Things.

TM

Based on the insights gained from this first study, we
plan on continuing investigating other stacks in detail
and specific vulnerability-prone components of stacks
at a large scale. Other activities under Project Memoria
may include larger discussions on the current process of
vulnerability disclosure as it is applied to the emerging
IoT world and specific recommendations to actively
defend networks and organizations.

RESEARCH REPORT | AMNESIA:33 | Conclusion

Download the white paper: Discover how Forescout
helps you actively defend against AMNESIA:33, including
six best practices to protect your organization.

View the webinar: Listen to our experts describing the
highlights of the research.

https://www.forescout.com/company/legal/intellectual-property-patents-trademarks
https://www.forescout.com/company/legal/intellectual-property-patents-trademarks
https://www.forescout.com/
https://www.forescout.com/amnesia33/?&utm_medium=amnesia33-webpage&utm_source=amnesia33-research-report&utm_campaign=amnesia33-webpage&utm_content=amnesia33-webpage
https://www.forescout.com/company/resources/amnesia33-identify-and-mitigate-the-risk-from-vulnerabilities-lurking-in-millions-of-iot-ot-and-it-devices/?&utm_medium=amnesia33-webpage&utm_source=amnesia33-research-report&utm_campaign=amnesia33-white-paper&utm_content=amnesia33-white-paper
https://www.forescout.com/company/events/webinars/?&utm_medium=amnesia33-webpage&utm_source=amnesia33-research-report&utm_campaign=amnesia33-webinar&utm_content=amnesia33-webinar

