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1.  Executive Summary 
Cellular routers connect critical Operational Technology (OT) and Internet of Things (IoT) devices to the 
internet. Electrical substations. Oil and gas fields. Temporary healthcare facilities — and more. These 
connections allow remote monitoring and control, especially where wired networks are difficult to deploy. 
 
At the end of 2023, we studied vulnerabilities in OT/IoT router vendor: Sierra:21. In that research, Forescout 
Research — Vedere Labs discovered open-source software components are a key vulnerability. Today, we have 
widened our research lens to understand the state of software components in OT/IoT network devices beyond 
one vendor. Our goal: To understand risk in the software supply chain from existing (“n-day”) vulnerabilities in 
the latest router firmware. 
 
Supply-chain vulnerabilities are hard to eradicate because firmware images frequently depend on outdated 
components for compatibility — allowing threat actors to target many devices with a single exploit. However, 
identifying the intricate components used in common models of a specific class of devices is difficult at 
scale. To help, we partnered with Finite State, a leading Software Bill of Materials (SBoM) vendor, to analyze 
firmware images from popular routers: Acksys, Digi, MDEX, Teltonika, and Unitronics.  
 

Key Findings 
• OpenWrt is everywhere 

Four out of the five firmware analyzed run operating systems derived from OpenWrt. These four 
firmware images use heavily modified versions of the base OS, either by mixing and matching 
individual component versions with a base version or developing their own in-house components. 
 

• Outdated software components abound 
Among 25 common components, the average open-source component is: 

• 5 years and 6 months old 
• 4 years and 4 months behind the latest release 
• The latest critical open-source components, including kernel and OpenSSL, are not being used 

 
• Known vulnerabilities are prevalent  

On average, these firmware images had 161 known vulnerabilities in their most common components:  
• 68 with a low or medium CVSS score,  
• 69 with a high score 
• 24 with a critical score.  
• 20 exploitable n-day vulnerabilities affecting the kernel 

 
• Security features are lacking across firmware images 

On average:  
• 41% of binaries use relocation read-only (RELRO) 
• 31% use stack canaries 
• 65% use Non-eXecutable bit (NX) 
• 75% use position independent executable/code (PIE) 
• 4% use hard-coded run-time library search paths (RPath)  
• 35% have debugging symbols 

 
Overall, we found positive correlations between the age of components, the number of known vulnerabilities 
and binary hardening practices. As expected, firmware with newer components tends to have fewer 
vulnerabilities and better binary protections. We observed a decline of default credentials which reduces the 
likelihood of exploitation under normal circumstances. However, we also noticed many issues with custom 
patching by vendors that do not change component versions and create confusion about what is actually 
vulnerable. 

https://www.forescout.com/resources/sierra21-vulnerabilities
https://finitestate.io/
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2.  Selecting and Analyzing OT/IoT Cellular Routers 
OT/IoT routers are frequent targets for cybercriminal botnets, nation-state APTs, such as Volt Typhoon 
(multiple times) or Fancy Bear, and hacktivists. We maintain an Adversary Engagement Environment (AEE) to 
monitor these activities. Vedere Labs reports have highlighted threat actors using public proof-of-concept 
(PoC) exploits to hijack routers and living-off-the-land (LotL) techniques for malicious operations. 
 
The Forescout Research dubbed Sierra:21 discovered 71% percent of vulnerabilities (15 of 21) were open-source 
software components – and most went unreported. Given that discovery, we wanted to understand what that 
meant for a much broader range of devices across many vendors. 
 
We began by identifying 290 firmware images from 39 manufacturers of OT/IoT network equipment available 
on the internet. We narrowed this list to include only devices that function as cellular routers, have firmware 
images that can be automatically analyzed, and are relatively popular (based on results from the Shodan 
search engine).  
 
From this refined list, we selected five firmware images for analysis, as shown in Table 1. The table details the 
specific models and firmware versions analyzed, alongside the number of exposed devices from each vendor 
found via Shodan. All the firmware versions analyzed were the latest we could find online at the time of the 
research (January 17, 2024). 

Table 1 – Selected firmware images and hits on Shodan 

 
Figure 1 illustrates Vedere Labs analysis methodology. Each firmware image was uploaded into the Finite State 
platform to gather data on software composition, historical vulnerabilities and public exploits that might 
affect the identified software components. Additionally, we collected data on binary hardening practices 
within the selected firmware images using a separate custom script based on checksec.sh. Finally, we 
manually validated the reported results to distinguish accurate components and vulnerabilities from false 
positives, which are inevitable in automated analysis due to the context-dependent nature of vulnerabilities 
For example, CVE-2018-1000517 affects busybox, but not the way that component is used in Digi’s firmware, as 
the binary in that firmware does not include the vulnerable busybox applet wget. 

https://source.sierrawireless.com/resources/airlink/software_reference_docs/technical-bulletin/sierra-wireless-technical-bulletin--malware-threat/#sthash.gFyawpw4.dpbs
https://www.securityweek.com/volt-typhoon-seen-exfiltrating-sensitive-ot-data/
https://www.securityweek.com/chinese-apt-volt-typhoon-linked-to-unkillable-soho-router-botnet/
https://www.forescout.com/blog/doj-moobot-botnet-commandeered-by-russian-apt28-analysis-of-attacks-against-routers-and-malware-samples/
https://industrialcyber.co/news/hacker-group-discloses-ability-to-encrypt-an-rtu-device-using-ransomware-industry-reacts/
https://www.forescout.com/research-labs/threat-intelligence/
https://www.forescout.com/research-labs/2023-threat-roundup/
https://www.shodan.io/
https://www.shodan.io/
https://github.com/slimm609/checksec.sh
https://nvd.nist.gov/vuln/detail/CVE-2018-1000517
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Figure 1 – Analysis methodology 

3.  Main Findings 

3.1. OpenWrt Is Everywhere 
After an initial analysis of the five selected firmware image filesystems, we found that all except Digi run 
operating systems derived from OpenWrt, an open-source Linux-based OS for embedded devices. The OpenWrt 
project started in 2004, was originally based on open-source components of the Linksys WRT54G router. The 
main components of the project include the Linux kernel, util-linux, musl and buysbox, with over 8,000 
additional software packages available through the opkg package management system.  
 
OpenWrt is well-known among hobbyists who customize their routers, supporting more than 2,200 different 
router models. However, it also serves as the foundation for several commercial firmware images, including 
those from Table 1, as well as Ubiquiti, TP-Link, Xiaomi, ZyXEL, and D-Link. Some vendors use other OSes based 
on OpenWrt. For instance, Teltonika and Acksys have developed in-house versions of OpenWrt called RutOS 
and WaveOS, while MDEX and Unitronics run their own modifications of RutOS. The only OS in Table 1 not 
related to OpenWrt is DAL OS (Digi Accelerated Linux), used by Digi.  

 
Figure 2 – OpenWrt supply chain and Unitronics router showing the RutOS banner originally from Teltonika 

https://openwrt.org/
https://openwrt.org/toh/start
https://openwrt.org/toh/start
https://wiki.teltonika-networks.com/view/Teltonika-Networks_Operating_System_-_RutOS
https://www.acksys.fr/en/products/softwares/waveos-acksys-products-operating-system/
https://www.digi.com/solutions/by-technology/dal-operating-system
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Figure 2 summarizes this supply chain. OpenWrt combines basic components, such as the Linux kernel with 
various other packages, which are then used in the firmware images of several vendors. Some vendors create 
derived firmware based on the original OpenWrt, while other projects, such as ImmortalWrt, fork the original 
OpenWrt for their own purposes. Components highlighted in blue in the figure are part of this research, 
whereas others are out of scope, but illustrate the widespread use of OpenWrt. The figure also shows the login 
banner of the Unitronics router displaying the “RutOS” message originally from Teltonika routers. 
 
As is common with long software supply chains, there are risks of vulnerabilities not being patched 
downstream or emerging due to how components are integrated. For example, TP-Link SOHO routers have 
known vulnerabilities exploited in the wild, originating from the LuCI web application component of OpenWrt: 
CVE-2017-16959 and CVE-2023-1389. The latter is frequently observed on Forescout’s AEE being used to deploy 
Mirai botnet variants. 
 
To understand how the four selected firmware images utilize the base OpenWrt OS, we compared the file 
hashes of binaries in each firmware, as identified by Finite State, with the hashes of binary files from five 
major OpenWrt releases (17.*, 18.*, 19.*, 21.*, 22.*, 23.*). Figure 3 shows that none of the firmware, had more than 
15% of their components matching known hashes from any given OpenWrt version. This indicates that these 
firmware images use heavily modified versions of the base OpenWrt OS, either by mixing and matching 
individual component versions with a base version or by developing their own in-house components. 

 
Figure 3 – Matches between binaries in each firmware image and OpenWrt base versions 

3.2. Software Components Are Often Outdated 
When we uploaded the five selected firmware images to the Finite State platform, the tool returned the results 
summarized in Table 2. The analysis time ranged from 35 minutes to 1 hour 45 minutes per firmware 
(averaging 1 hour 19 minutes). It identified between 500 and nearly 900 components in each firmware (an 
average of 662 components), and between 1,200 and 2,500 “findings” (an average of 2,154). Findings included 
known vulnerabilities, weak security posture (such as default credentials or hardcoded cryptographic 
material) and potential new vulnerabilities identified through binary static analysis. On average, the 
automatic analysis identified more than three findings per component across all firmware images. 

https://github.com/immortalwrt/immortalwrt
https://www.cvedetails.com/cve/CVE-2017-16959/
https://nvd.nist.gov/vuln/detail/CVE-2023-1389
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Table 2 – Summary of components and findings from the Finite State platform 

 

The Finite State platform also categorized the findings by severity (low, medium, high and critical) and 
assigned a risk score to each, as well as a summarized risk score for each firmware image, as shown in Figure 
4 (captured from the tool’s user interface). Most findings were categorized as low severity, but every firmware 
had at least one critical finding. On average, a firmware image had a risk score of 84.4, with 7 critical findings, 
33.4 high-severity findings, 212.6 medium-severity findings and 1901.6 low-severity findings. 
 

 
Figure 4 – Categorized findings and risk score provided by the Finite State platform 
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Since manually verifying and enriching each component or finding is beyond the scope of this research, we 
focused on the components that are most common across firmware images (used in at least three of the five 
images in question) and have known vulnerabilities.  
 
Table 4 (in the appendix) lists the 25 selected open-source software components. Publicly available exploits 
exist for at least one version of 12 out of these 25 components. Keep reading for more insight on n-day 
vulnerabilities. The table provides insights into the open-source components used by different firmware 
images and its state of software component decay: 
 

• Out of 25 components, only one is used in its latest version by every firmware: shellinabox (2016) 
• lilblzo is used in its latest version by every image except MDEX 
• None of the five firmware images has the latest versions of all components 

 
• Digi has the latest version of three components:  

o busybox, dnsmasq and libpcre  
o Teltonika has the latest versions of two (gpsd and hostapd) 

 
• The other three firmware images have all outdated components.  

o The average open-source component on an OT/IoT router is: 
▪ 5 years and 6 months old  
▪ 4 years and 4 months behind the latest release 

 
• The oldest component was readline 6.2 (13 years old)  
• The furthest behind the latest release was ncurses 5.9 (more than 11 years behind ncurses 6.4) 

 
• No firmware used the latest Linux kernel version:  

o The oldest kernel was Linux 3.10.36 on MDEX  
▪ It was released in April 2014 
▪ making it almost 10 years old at the time of investigation 

o The newest kernel was Linux 6.3 on Digi 
▪ Released in April 2023  
▪ More than 6 months before the firmware release 

 
Overall, even the most recent firmware images often do not use the latest release of open-source 
components, including some of the most critical ones. Notably, only Teltonika uses a Linux kernel version 
that is still maintained. The kernels used by Digi and Acksys have been unsupported since 2023, while those 
used by MDEX and Unitronics reached end of life in 2017. Additionally, all firmware images, except for Digi’s, 
rely on an unsupported version of OpenSSL. 
 
Another important observation is that although the Digi device performs a similar function to the others and 
has no relation to OpenWrt, Table 4 shows that most embedded Linux systems are quite similar. If two devices 
from two different vendors are designed to perform similar functions, they are likely built using the same 
open-source components. 

3.3. Known Vulnerabilities Abound 
Returning to the discussion on component decay from the previous section, Figure 5 shows the average and 
maximum “age” of components for each firmware in months. Here, “age” refers to the time elapsed between 
the release date of a component and the date of the research (January 17, 2024). Digi has the newest 
components on average, followed by Teltonika, Acksys, Unitronics and MDEX.  
 

https://en.wikipedia.org/wiki/Software_rot
https://www.openssl.org/
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Figure 5 - Component age per firmware 

To determine whether the age of components directly affects the number of historical (or “n-day”) 
vulnerabilities present, we examined the total number of vulnerabilities per component in each firmware. 
 
We separated the Linux kernel from other third-party components (mostly Linux packages) when analyzing 
historical vulnerabilities due to the high volume of issues in the kernel. We will first discuss the third-party 
components and then address the kernel issues. 
 

Third-Party Components 
Figure 6 shows the number of historical vulnerabilities associated with the common open-source components 
used in the firmware images we analyzed. On average, these firmware images had 161 known vulnerabilities in 
their most common components. It is evident that Teltonika and Digi have accumulated the fewest 
vulnerabilities, followed by Acksys, Unitronics and MDEX. This is unsurprising, as their open-source package 
versions are more up-to-date compared to the other firmware images on our list. The distribution of 
vulnerabilities is almost perfectly correlated with the age of software components, with the exception that 
Teltonika has fewer vulnerabilities than Digi. 
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Figure 6 – Historical vulnerabilities in the analyzed firmware images 

Figure 7 breaks down the historical vulnerabilities by CVSSv3 score. On average, firmware images had 68 
vulnerabilities with a low or medium score, 69 with a high score and 24 with a critical score. Digi and Teltonika 
have relatively few vulnerabilities in their open-source components with the highest score being 9.8 (7 and 6 
vulnerabilities respectively). In contrast, Unitronics, MDEX, and Acksys have 21, 24, and 27 with high scores, 
respectively. 
 

 
Figure 7 – Number of historical vulnerabilities by CVSS score 
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Linux Kernel 
Table 5 (in the appendix) lists the n-day vulnerabilities affecting the Linux kernel used in the firmware images 
we analyzed. Given the thousands of vulnerabilities associated with these kernel versions, we narrowed our 
analysis to those vulnerabilities that allow for privilege escalation or remote code execution and have a public 
exploit or detailed write-up, as these can more easily be used to take over a vulnerable device,  
 
To estimate whether a kernel version is affected by a vulnerability, we consulted the Common Platform 
Enumeration (CPE) data on the National Vulnerability Database (NVD) and cross-checked the release dates of 
the known affected versions. We also excluded vulnerabilities listed as fixed in security advisories from the 
vendors (if available). We found firmware changelogs from Acksys, Digi, MDEX, and Teltonika, as well as 
dedicated security advisories from Acksys (currently offline), Digi, Teltonika, and Unitronics. However, these 
advisories contained very few mentions of patches applied to the Linux kernel. This lack of detail is 
understandable for current LTS kernels that should incorporate all patches (as is the case with Teltonika) but 
it raises concerns for older, unsupported kernel versions. 
 
On average, the firmware images had 20 exploitable n-day vulnerabilities affecting the kernel. Some notable 
observations for specific firmware include: 

• Teltonika runs the latest version of an LTS kernel (5.4.259) so it was not affected by any exploits.  
• Digi uses a relatively fresh kernel (6.3.0), but its support ended in July 2023 and several exploits have 

emerged since then.  
• Although the kernel releases of Acksys, MDEX, and Unitronics, are several years apart, they are affected 

by roughly the same number of exploits (between 29 and 33). This similarity may be explained by the 
ever-changing nature of the Linux kernel project: with newer releases, old vulnerabilities are eventually 
patched, but new functionality often introduces new issues. 

3.4. Security Features Are Lacking 
We evaluated the security practices of the firmware images in two ways: the use of binary hardening 
techniques, which make exploitation of vulnerabilities more difficult, and the use of default credentials, which 
can allow attackers to take over devices if the credentials are not changed or are easy to guess. 
 

Binary Hardening 
To assess binary hardening practices, we considered the following features: 

• RELRO (Relocation Read-Only): This feature ensures that the linker resolves all dynamically-linked 
functions at the beginning of the program execution and sets the Global Offset Table (GOT), used for 
resolving function addresses in shared libraries, to read-only. This prevents attackers from arbitrarily 
redirecting execution by overwriting the GOT.  

• PIE (Position Independent Executable): This mechanism loads all functions of the target binary and its 
dependencies into arbitrary locations in virtual memory, making it much more difficult to launch 
Return-Oriented Programming (ROP) attacks.  

• Stack canaries: These are secret, randomly generated, values placed onto the stack of a function. 
Before a function returns, the canary value is checked and, if it has been altered, the program exits. 
This prevents straightforward stack smashing exploits, although it does not prevent scenarios when 
stack canaries may be “leaked” to the attacker. 

• NX (No eXecute bit): This hardware feature allows an operating system to mark certain memory pages 
as non-executable, preventing code from running in these areas. When used, the stack and heap areas 
are marked as non-executable, preventing straightforward buffer overflow exploits. 

• RPath (Runtime library search path): This feature in Unix-like systems informs the dynamic linker of 
the location of the shared libraries. While it can improve portability and compatibility, it must be used 
carefully, as including relative or untrusted paths that point to shared libraries introduces security 
risks. 

https://www.acksys.fr/wp-content/uploads/2021/04/WaveOS-release-notes.html
https://hub.digi.com/dp/path=/support/asset/digi-ix-23.12.1.56.pdf
https://wiki.mdex.de/Support/MX530MX880ReleaseNotesEn
https://wiki.teltonika-networks.com/index.php?title=RUT955_Firmware_Downloads_(legacy_WebUI)&mobileaction=toggle_view_desktop
https://web.archive.org/web/20220626210033/https:/www.acksys.fr/en/cve-alerts/
https://www.digi.com/resources/security
https://teltonika-networks.com/support/security-centre
https://www.unitronicsplc.com/cybersecurity/
https://en.wikipedia.org/wiki/Return-oriented_programming
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• Symbols in binaries: Symbols are used for debugging purposes but are also aid attackers, by 
simplifying reverse engineering and exploitation. Since most binaries in question are open source, the 
presence of debugging symbols does not give a significant advantage.  

 
RELRO has a minor performance impact when program execution starts, while PIE affects both startup times 
and runtime performance. When these mechanisms are combined, the performance overhead may become 
more noticeable in certain cases. There are different variants of stack canaries, some of which are relatively 
expensive in terms of performance overhead. However, any overheads introduced by binary hardening are 
generally considered acceptable due to their added security benefits, especially for network devices. We 
demonstrated the effect of missing hardening features in Vedere Labs previous research, Sierra:21. 
 
The left-hand side of Figure 8 displays the percentage of all binaries, including executables, shared libraries, 
and kernel modules, within each analyzed firmware that have binary hardening features present. On average, 
41% of binaries across firmware images use RELRO, 31% use stack canaries, 65% use NX, 75% use PIE, 4% use 
RPath and 35% have debugging symbols. MDEX and Unitronics appear extremely similar, likely because both 
derive from Teltonika’s RutOS, and their release dates are relatively close. Teltonika’s firmware looks notably 
different, likely because it was released much later than the former two with changes that may have not yet 
been incorporated into the customized variants of RutOS used by MDEX and Unitronics. 

 
Figure 8 – Binary hardening in the analyzed firmware images (all binary files) 

The right-hand side of Figure 8 shows the same information, but focuses only on executables:  
 

• The “NX” and “symbols” bars are missing because the flag is enabled in all executables and they have 
all been stripped, preventing a whole class of trivial buffer overflow exploits.  

• On average, 58% of executables use RELRO, 35% use stack canaries, only 2.5% use PIE and only 7% use 
RPath. However, these averages can be misleading due to significant differences between firmware 
images, which we explore below. 

• Most executables in Teltonika and Digi use stack canaries, while most executables in Acksys, 
Teltonika and Digi have RELRO enabled, ruling out attacks involving GOT overwrites.  

• Most executables across all firmware images do not use PIE, introducing significant security risks, 
especially for executables that do not use stack canaries (MDEX, Unitronics, and Acksys). The 
effectiveness of Address-space Layout Randomization (ASLR) is significantly limited when PIE is not 
used, and the absence of stack canaries makes it even easier to implement buffer overflow exploits. 

• In summary, if a buffer overflow is found in almost any of the executables within Acksys, MDEX and 
Unitronics, it is highly likely that it can be exploited to achieve code execution. Not surprisingly, 
Teltonika and Digi, the vendors with the most recent components and fewer n-days are also the ones 
best employing binary hardening techniques. 

 

https://www.forescout.com/resources/sierra21-vulnerabilities
https://en.wikipedia.org/wiki/Address_space_layout_randomization
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Default Credentials 
Table 3 shows how the analyzed firmware images use default credentials. All of them come with pre-
configured default credentials, derived in different ways. This would be a problem if they did not force 
password changes on the first use. We confirmed that four out of five firmware images do require this change. 
For the fifth image, Acksys, we could not confirm whether the change is forced or not, so it is marked as “No” 
with an asterisk in the table. Overall, these results indicate that modern firmware for OT/IoT routers generally 
do not suffer from the issue of easily exploitable default credentials. 
 

Table 3 – Use of default credentials on the analyzed firmware

 

4.  Technical Deep Dive: Custom Security Patches 
Sometimes downstream vendors choose to provide their own support for some third-party components, 
applying upstream security patches or fixing vulnerabilities independently of the original maintainers. Various 
reasons may drive this choice, such as a component no longer being maintained upstream or a component 
being difficult to upgrade without breaking important functionality. We often encountered this during Project 
Memoria, where embedded device vendors used end-of-life TCP/IP stacks like uIP or operating systems like 
Contiki in still supported products 
 
This approach can lead to confusion, especially when there are no public records or security advisories 
mentioning these custom patches. Furthermore, some custom patches may be incorrect, not only failing to 
remediate a vulnerability, but potentially introducing new ones due to incomplete patching. 
 
To illustrate this situation, consider the example of CVE-2020-8597, a stack buffer overflow in the pppd 
daemon used by four of the five firmware analyzed in this research. The vulnerability can be triggered by 
sending an unsolicited Extensible Authentication Protocol (EAP) MD5-Challenge message to a vulnerable PPP 
server or client, resulting in a denial of service or remote code execution.  
 
Figure 9 shows a fragment of the official patch for CVE-2020-8597. Two functions that parse EAP requests and 
responses – eap_request() and eap_response() – contained the same vulnerable code. Therefore, we only show 
the fragment for the eap_request() function. One way to trigger the vulnerability is by sending a long peer 
name as part of an EAP request. Here, rhostname is a buffer that is supposed to hold a peer name (an array of 
256 bytes), vallen (unsigned char) is the length of the corresponding tag (a specific field in a packet), and len 

https://www.forescout.com/research-labs/project-memoria/
https://www.forescout.com/research-labs/project-memoria/
https://www.forescout.com/resources/concluding-ot-icefall-report/
https://ppp.samba.org/
https://ppp.samba.org/
https://medium.com/apple-developer-academy-federico-ii/exploiting-cve-2020-8597-119c645c0699
https://github.com/ppp-project/ppp/commit/8d7970b8f3db727fe798b65f3377fe6787575426
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(integer) is the actual length of the peer name. It is possible to craft an EAP request, so that the value of vallen 
becomes smaller than len+256 (i.e., sizeof(rhostname)); at the same time, vallen should be larger than len. 
This will ensure that the “else” branch of the condition shown on line 1432 will be executed, overflowing the 
rhostname buffer. 
 

 
Figure 9 – The patch for CVE-2020-8597 

According to the original vulnerability description, CVE-2020-8597 affects pppd versions from 2.4.2 through 
2.4.8. Based on this information, three of the firmware images that we analyzed contain a vulnerable binary 
(see Table 4): Teltonika, MDEX and Unitronics. To confirm this, we analyzed the pppd binary shipped with these 
firmware images and found two distinct situations:  
 

1. MDEX and Teltonika: Both contained the official patch. However, their version numbers remained 
unchanged: 2.4.7 and 2.4.8, respectively. Additionally, the corresponding changelog advisories from 
both vendors clearly stated that CVE-2020-8597 was patched.  
 

2. Unitronics: This firmware contained a custom and incorrect patch for CVE-2020-8597. Figure 10 shows 
a pseudocode fragment generated from the corresponding disassembly. The entire condition that 
checks len and vallen has been removed (line 1423 on Figure 9), along with the contents of the “if” 
branch, leaving the unguarded vulnerable “else” branch in place. We checked the official pppd source 
code repository and concluded that these changes are a custom patch rather than an older unpatched 
version. We also emulated the pppd binary on the firmware image and confirmed that the vulnerability 
could be triggered, indicating that the patch was incorrect. 

 

 
Figure 10 – A vulnerable pseudocode fragment in the pppd binary from Unitronics 

We could not find any changelog or security advisory mentioning this custom patch from Unitronics. This 
example illustrates a likely case of silent patching that may leave a product exposed for longer, as the vendor 
has a false impression that the vulnerability has been patched and no further action is necessary. 
 
Note: after concluding our analysis of the latest Unitronics firmware image available at the time of this 
research, we discovered that on February 12th 2024, two newer versions of Unitronics firmware images were 
uploaded (versions 17.01.12.25 and 51.06.06.252). We checked the pppd binary in these images and they now 
appear to contain the same (correct) patch seen in Teltonika and MDEX.  

https://nvd.nist.gov/vuln/detail/CVE-2020-8597
https://support.unitronics.com/index.php?/selfhelp/view-article/ucr-firmware
https://support.unitronics.com/index.php?/selfhelp/view-article/ucr-firmware
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5.  Conclusion 
This research reveals that when analyzing firmware images from different vendors for a similar category of 
devices they exhibit both:  
 

• Similarity in component usage: Many devices rely on the same operating system distributions and 
optional packages. 

• Differences in component versions: The specific versions of these components vary significantly. 
Notably, a more recent firmware from vendor A does not necessarily have more up-to-date components  
than an older firmware from vendor B. Importantly, there is a correlation between using newer versions 
of software components and having fewer vulnerabilities, as well as better security practices. 
 

Even minor differences in software versions can significantly impact vulnerabilities and, consequently, the 
risk that a device poses to an asset owner. Because the current system of changelogs and security advisories 
fails to provide adequate information about which vulnerabilities affect a device, this research provides 
further empirical evidence for the need for precise SBOMs.  
 
SBOMs can be generated and provided by the device manufacturers or reconstructed from a firmware image, 
as we did throughout this research using Finite State. However, most manufacturers still decline to provide 
SBOMs to their customers and those that do often take months to deliver outdated or incomplete information. 
Therefore, automated SBOM generation from firmware is necessary, but it is inherently limited due to factors 
like encrypted firmware, proprietary formats, and exotic CPU architectures. 
 
SBOM solutions are more effective when used to enrich information about vulnerabilities, exploits, threats and 
risks on an initial SBOM provided by the manufacturer. They are also used to identify inconsistencies in that 
provided SBOM rather than build an SBOM from scratch.  
 
Device manufacturers need to improve the information provided to customers. They should be more 
transparent about the components they use, the versions of these components and the patches that have 
been applied. And they should use standardized formats whenever possible. This transparency helps 
customers understand their risks, mitigate them quickly and use the information in an interoperable way with 
other solutions. It also demonstrates a manufacturer’s maturity, as security through obscurity never works.  
 
The number of vulnerabilities is expected to grow. On top of increasing lines of code leading to more 
vulnerabilities, the very understanding of what constitutes a vulnerability is expanding. For example, in 
February 2024, the Linux kernel project became a CVE numbering authority (CNA) and will assign a CVE to 
every bug in the kernel. As more attackers target embedded devices, the risk to these devices is also 
increasing. 
 
SBOMs and precise component information are crucial not only when procuring new equipment or planning 
patching, but also for understanding device risk and detecting and responding to threats on the network. 
Effective OT/IoT risk mitigation requires a network-based, granular and dynamic asset inventory. This 
inventory should be capable of extracting information such as vendor, OS, firmware version, and more, using 
passive network fingerprints or active capabilities. It should also correlate that information with SBOMs to 
provide contextualized risk information and support the enforcement of mitigating controls. 

 

 

https://www.darkreading.com/ics-ot-security/southern-company-builds-a-power-substation-sbom
https://www.darkreading.com/ics-ot-security/southern-company-builds-a-power-substation-sbom
https://cwe.mitre.org/data/definitions/656.html
https://amanitasecurity.com/posts/dear-linux-kernel-cna-what-have-you-done/
https://amanitasecurity.com/posts/dear-linux-kernel-cna-what-have-you-done/
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Appendix – Data Tables 
 

Table 4 – The most common open-source components (cells in red represent available exploits) 

Component latest 
release 

Acksys  
(04.01.2024) 

Digi  
(01.12.2023) 

MDEX  
(01.10.2022) 

Teltonika  
(19.05.2023) 

Unitronics  
(14.09.2021) 

Linux 6.6.9 
(1-1-2024) 

Linux 4.9.111 
(3-Jul-2018) 

Linux 6.3.0 
(23-Apr-2023) 

Linux 3.10.36 
(3-Apr-2014) 

Linux 5.4.259 
(25-Oct-2023) 

Linux 3.18.44 
(24-Oct-2016) 

OpenSSL 3.2.0 / 
1.1.1w 

(23-Nov-2023) / 
(12-Sep-2023) 

OpenSSL 1.1.1n 
(15-Mar-2022) 

OpenSSL 3.1.1 
(30-May-2023) 

OpenSSL 1.1.1k 
(25-Mar-2021) 

OpenSSL 1.1.1t 
(07-Feb-2023) 

OpenSSL 1.1.1c 
(28-May-2019) 

busybox 1.36.1 
(19-May-2023) 

busybox 1.28.3 
(3-Apr-2018) 

busybox 1.36.1 
(19-May-2023) 

busybox 1.30.1 
(10-June-2019) 

busybox 1.34.1 
(30-Sep-2021) 

busybox 1.30.1 
(10-June-2019) 

curl 8.5.0 
(6-Dec-2023) 

curl 7.60.0 
(16-May-2018) 

curl 8.1.2 
(30-May-2023) 

curl 7.66.0 
(11-Sep-2019) 

curl 8.4.0 
(11-Oct-2023) 

curl 7.64.0 
(6-Feb-2019) 

dnsmasq 2.89 
(4-Feb-2023) 

dnsmasq 2.80 
(18-10-2018) 

dnsmasq 2.89 
(4-Apr-2023) 

dnsmasq 2.82 
(19-Jul-2020) 

dnsmasq 2.85 
(7-Apr-2021) 

dnsmasq 2.79 
(18-Mar-2018) 

libgps / gpsd 3.25 
(10-Jan-2023) 

gpsd 3.17 
(7-Sep-2017) 

gpsd 3.21 
(4-Aug-2020) 

gpsd 3.0 
(3-Oct-2011) 

gpsd 3.25 
(10-Jan-2023) 

gpsd 3.0 
(3-Oct-2011) 

hostapd 2.10 / 
wpa_supplicant 

2.10 
(16-Jan-2021) 

hostapd 2.10 / 
wpa_supplicant 

2.10 
(16-Jan-2021) 

hostapd 2.10 / 
wpa_supplicant 

2.10 
(16-Jan-2021) 

hostapd 2.7 / 
wpa_supplicant 2.7 

(2-Dec-2018) 

hostapd 2.10 / 
wpa_supplicant 

2.10 
(16-Jan-2021) 

hostapd 2.7 / 
wpa_supplicant 2.7 

(2-Dec-2018) 

iptables 1.8.10 
(10-Oct-2023) 

iptables 1.6.2 
(2-Feb-2018) 

iptables 1.8.7 
(15-Jan-2021) 

iptables 1.4.21 
(22-Nov-2013) 

iptables 1.8.7 
(15-Jan-2021) 

iptables 1.4.21 
(22-Nov-2013) 

libpcap 1.10.4 
(7-Apr-2023) 

libpcap 1.9.0 
(24-Jun-2018) 

libpcap 1.10.0 
(29-Dec-2020) 

libpcap 1.5.3 
(18-Dec-2013) 

libpcap 1.9.1 
(22-Jul-2018) 

libpcap 1.8.1 
(26-Oct-2016) 

zlib 1.3.0 
(18-Aug-2023) 

zlib 1.2.11 
(15-Jan-2017) 

zlib 1.2.11 
(15-Jan-2017) 

zlib 1.2.8 
(29-Apr-2013) 

zlib 1.2.11 
(15-Jan-2017) 

zlib 1.2.11 
(15-Jan-2017) 

strongswan 5.9.13 
(1-Dec-2023) 

strongswan 5.9.5 
(24-Jan-2022) 

strongswan 5.9.10 
(2-Mar-2023) 

strongswan 5.3.3 
(7-Sep-2015) 

strongswan 5.9.2 
(26-Feb-2021) 

strongswan 5.6.2 
(19-Feb-2018) 

openvpn 2.6.8 
(17-Nov-2023) 

openvpn 2.4.9 
(17-Apr-2020) 

openvpn 2.6.4 
(11-May-2023) 

openvpn 2.4.7 
(20-Feb-2019) 

openvpn 2.5.3 
(17-Jun-2021) 

openvpn 2.4.5 
(6-Apr-2018) 

pppd 2.5.0 
(4-Apr-2023) 

N/A pppd 2.4.9 
(4-Jan-2021) 

pppd 2.4.7 
(9-Aug-2014) 

pppd 2.4.8 
(21-Mar-2020) 

pppd 2.4.7 
(9-Aug-2014) 

libpcre 8.45 / 
libpcre2 10.39 

(22-Jun-2021) EoL / 
(29-Oct-2021) 

N/A libpcre 8.45 
(22-Jun-2021) 

libpcre 8.35 
(8-Apr-2014) 

libpcre2 10.37 
(26-May-2021) 

libpcre 8.42 
(2-Apr-2018) 

util-linux 2.39.3 
(4-Dec-2023) 

N/A util-linux 2.37.2 
(16-Aug-2021) 

util-linux 2.24.1 
(20-Jan-2014) 

util-linux 2.36.1 
(16-Nov-2020) 

util-linux 2.24.1 
(20-Jan-2014) 

lua 5.4.6 
(2-May-2023) 

lua 5.1.5 
(13-Feb-2012) 

N/A lua 5.1.5 
(13-Feb-2012) 

lua 5.1.5 
(13-Feb-2012) 

lua 5.1.5 
(13-Feb-2012) 
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liblzo 2.10 
(1-Mar-2017) 

liblzo 2.10 
(1-Mar-2017) 

N/A liblzo 2.06 
(12-Aug-2011) 

liblzo 2.10 
(1-Mar-2017) 

liblzo 2.10 
(1-Mar-2017) 

dropbear 2022.83 
(14-Nov-2022) 

dropbear 2017.75 
(18-May-2017) 

N/A dropbear 2018.76 
(27-Feb-2018) 

dropbear 2020.81 
(29-Oct-2020) 

dropbear 2019.78 
(27-Mar-2019) 

ncurses 6.4 
(31-Dec-2022) 

ncurses 6.1 
(27-Jan-2018) 

ncurses 6.3 
(8-Nov-2021) 

ncurses 5.9 
(4-Apr-2011) 

N/A ncurses 6.1 
(27-Jan-2018) 

readline 8.2 
(26-Sep-2022) 

readline 7.0 
(15-Sep-2016) 

readline 7.0 
(15-Sep-2016) 

readline 6.2 
(13-Feb-2011) 

N/A readline 7.0 
(15-Sep-2016) 

tcpdump 4.99.4 
(7-Apr-2023) 

tcpdump 4.9.2 
(3-Sep-2017) 

tcpdump 4.99.1 
(9-Jun-2021) 

tcpdump 4.9.3 
(30-Sep-2019) 

N/A tcpdump 4.9.2 
(3-Sep-2017) 

musl libc 1.2.4 
(1-5-2023) 

musl libc 1.2.3 
(7-Apr-2022) 

musl libc 1.2.3 
(7-Apr-2022) 

N/A musl libc 1.1.24 
(13-Oct-2019) 

N/A 

shellinabox 2.20 
(9-11-2016) 

N/A shellinabox 2.20 
(9-11-2016) 

N/A shellinabox 2.20 
(9-11-2016) 

shellinabox 2.20 
(9-11-2016) 

stunnel 5.71 
(19-Sep-2023) 

N/A stunnel 5.66 
(11-Sep-2022) 

N/A stunnel 5.50 
(2-Dec-2018) 

stunnel 5.50 
(2-Dec-2018) 

libffi 3.4.4 
(24-Oct-2022) 

libffi 3.3-2 
(23-Nov-2019) 

libffi 3.0.13 
(17-Mar-2013) 

libffi 3.0.13 
(17-Mar-2013) 

N/A N/A 

 
Table 5 – Linux kernel exploits (cells in red represent vulnerabilities with available exploits affecting a specific firmware) 

CVE Exploit / writeup link 
Acksys 

(29) 
Digi  
(6) 

MDEX  
(33) 

Teltonika  
(0) 

Unitronics  
(31) 

CVE-2023-2598 io_uring out-of-bounds access to physical memory           

CVE-2023-3269 
Use-after-free in Linux memory management 
subsystem (StackRot)  

         

CVE-2023-3389 Use-after-free in io_uring (LinkedPoll)           

CVE-2022-0435 A stack overflow flaw was found in the Linux kernel's 
TIPC protocol  

         

CVE-2022-34918 A heap-based buffer overflow in Netfilter           

CVE-2022–32250 Use-after-free in Netfilter           

CVE-2023-32233 Netfilter nf_tables use-after-free           

CVE-2023-3390 Use-after-free in Netfilter           

CVE-2023-35001 Out-of-bounds read/write in nftables           

CVE-2022-27666 A heap-based buffer overflow in IPSec ESP           

CVE-2022-1015 Out-of-bounds read/write in netfilter subsystem           

CVE-2022-29582 Use-after-free in io_uring           

CVE-2022-2586 Linux kernel nft_object use-after-free           

CVE-2022-42703 Use-after-free in the Linux memory management 
subsystem  

         

CVE-2022-32250 Use-after-free in Netfilter           

CVE-2022-2078 A buffer overflow in Netfilter's 
nft_set_desc_concat_parse() function  

         

CVE-2022-2602 Use-after-free in io_uring           

CVE-2021-22555 netfilter local privilege escalation           

CVE-2021-23134 Use-after-free in nfc sockets           

https://anatomic.rip/cve-2023-2598/
https://github.com/lrh2000/StackRot
https://github.com/lrh2000/StackRot
https://qyn.app/posts/CVE-2023-3389/
https://blog.immunityinc.com/p/writing-a-linux-kernel-remote-in-2022/
https://blog.immunityinc.com/p/writing-a-linux-kernel-remote-in-2022/
https://veritas501.github.io/2022_08_02-CVE-2022-34918%20netfilter%20%E5%88%86%E6%9E%90%E7%AC%94%E8%AE%B0/
https://github.com/theori-io/CVE-2022-32250-exploit
https://github.com/Liuk3r/CVE-2023-32233
https://kaist-hacking.github.io/pubs/2023/kim:kernel-ctf-slides.pdf
https://www.synacktiv.com/publications/old-bug-shallow-bug-exploiting-ubuntu-at-pwn2own-vancouver-2023
https://etenal.me/archives/1825
https://anatomic.rip/cve-2022-1015/
https://ruia-ruia.github.io/2022/08/05/CVE-2022-29582-io-uring/
https://www.openwall.com/lists/oss-security/2022/08/29/5
https://googleprojectzero.blogspot.com/2022/12/exploiting-CVE-2022-42703-bringing-back-the-stack-attack.html
https://googleprojectzero.blogspot.com/2022/12/exploiting-CVE-2022-42703-bringing-back-the-stack-attack.html
https://anatomic.rip/cve-2022-32250/
https://www.randorisec.fr/yet-another-bug-netfilter/
https://www.randorisec.fr/yet-another-bug-netfilter/
https://1day.dev/notes/CVE-2022-2602-DirtyCred-File-Exploitation-applied-on-an-io_uring-UAF/
https://www.exploit-db.com/exploits/50135
https://web.archive.org/web/20220616193522/https:/ruia-ruia.github.io/NFC-UAF/
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CVE-2021-3715 A flaw in the Traffic Control networking subsystem           

CVE-2021-33909 A variable size conversion issue on the filesystem layer           

CVE-2021-42008 
Slab-Out-Of-Bounds Write vulnerability in the Linux 
6pack driver  

         

CVE-2021-3609 Memory corruption in the CAN subsystem           

CVE-2021-3573 Use-after-free in the HCI subsystem (Blue Klotski)           

CVE-2021-27365 Heap-based buffer overflow in iSCSI driver           

CVE-2020-14381 A flaw in the futex implementation           

CVE-2020-14386 A memory corruption issue           

CVE-2019-18675 Integer overflow in cpia2          

CVE-2019-19377 Use-after-free with crafted btrfs filesystem images           

CVE-2019-19241 privilege escalation via io_uring           

CVE-2018-14634 Integer overflow in create_elf_tables()           

CVE-2018-18281 An issue with mremap()           

CVE-2018-17182 VMA use-after-free           

CVE-2017-16695 Memory corruption in BPF           

CVE-2017-11176 A flaw in the mq_notify function           

CVE-2017-1000112 UFO' privilege escalation           

CVE-2017-7308 Paclet Socket local priv esc           

CVE-2017-7184 
xfrm Module Cross-Border Read-Write Escalation 
Vulnerability  

         

CVE-2017-2636 Race condition in HDLC drivers           

CVE-2017-6074 
Issues with DCCP_PKT_REQUEST packet data 
structures  

         

CVE-2016-8655 af_packet          

CVE-2016-1583 Issues with the ecryptfs_privileged_open function           

CVE-2016-5195 Dirty Cow           

CVE-2016-7117 Use-after-free in the __sys_recvmmsg function           

CVE-2015-1328 overlayfs local priv esc          

CVE-2014-4014 SGID Privilege Escalation           

CVE-2014-3153 An issue with futex_requeue function (Towelroot)           

CVE-2014-2851 Integer overflow in the ping_init_sock function           

CVE-2014-4699 ptrace/sysret vulnerability           
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https://zplin.me/talks/BHEU21_trash_kernel_bug.pdf
https://www.qualys.com/2021/07/20/cve-2021-33909/sequoia-local-privilege-escalation-linux.txt
https://syst3mfailure.io/sixpack-slab-out-of-bounds/
https://syst3mfailure.io/sixpack-slab-out-of-bounds/
https://github.com/nrb547/kernel-exploitation/blob/main/cve-2021-3609/cve-2021-3609.md
https://f0rm2l1n.github.io/2021-07-23-Blue-Klotski/
https://blog.grimm-co.com/2021/03/new-old-bugs-in-linux-kernel.html
https://blog.frizn.fr/linux-kernel/cve-2020-14381
https://unit42.paloaltonetworks.com/cve-2020-14386/
https://deshal3v.github.io/blog/kernel-research/mmap_exploitation
https://cyberweek.ae/materials/2020/D1T2%20-%20Kernel%20Exploitation%20with%20a%20File%20System%20Fuzzer.pdf
https://www.exploit-db.com/exploits/47779
https://www.openwall.com/lists/oss-security/2018/09/25/4
https://googleprojectzero.blogspot.com/2019/01/taking-page-from-kernels-book-tlb-issue.html
https://www.exploit-db.com/exploits/45497
https://ricklarabee.blogspot.com/2018/07/ebpf-and-analysis-of-get-rekt-linux.html
https://labs.bluefrostsecurity.de/revisiting-cve-2017-11176
https://seclists.org/oss-sec/2017/q3/277
https://www.exploit-db.com/exploits/41994
https://web.archive.org/web/20190418223944/http:/p4nda.top/2019/02/16/CVE-2017-7184/
https://web.archive.org/web/20190418223944/http:/p4nda.top/2019/02/16/CVE-2017-7184/
https://a13xp0p0v.github.io/2017/03/24/CVE-2017-2636.html
https://xairy.io/articles/cve-2017-6074
https://xairy.io/articles/cve-2017-6074
https://www.exploit-db.com/exploits/40871
https://googleprojectzero.blogspot.com/2016/06/exploiting-recursion-in-linux-kernel_20.html
https://www.exploit-db.com/exploits/40847
https://blog.lizzie.io/notes-about-cve-2016-7117.html
https://www.exploit-db.com/exploits/37293
https://www.exploit-db.com/exploits/33824
https://github.com/MaherAzzouzi/LinuxKernelStudy/tree/main/CVE-2014-3153
https://cyseclabs.com/page?n=02012016
https://cyseclabs.com/blog/cve-2014-4699-linux-kernel-ptrace-sysret-analysis
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